University of Leicester
Browse
TEXT
clean-tweet-text.R (3.92 kB)
DOCUMENT
MMc-class-tweets-111-flair010-TextClassifier--F1-scores.docx (16.7 kB)
TEXT
MMc-class-tweets-111-flair010-TextClassifier-context-c6c12m1-prediction.py (3.07 kB)
TEXT
MMc-class-tweets-111-flair010-TextClassifier-context-c6c12m1.py (5.01 kB)
TEXT
MMc-class-tweets-111-flair010-TextClassifier-emotion-e6c11m2-prediction.py (2.89 kB)
TEXT
MMc-class-tweets-111-flair010-TextClassifier-emotion-e6c11m2.py (5.03 kB)
TEXT
MMc-compare-classifications-maps.html (8.41 MB)
TEXT
MMc-compare-classifications-maps.Rmd (9.14 kB)
TEXT
MMc-compare-classifications-plots.html (16.11 MB)
TEXT
MMc-compare-classifications-plots.Rmd (36.19 kB)
TEXT
MMc-compare-classifications-spatial-analysis.html (2.24 MB)
TEXT
MMc-compare-classifications-spatial-analysis.Rmd (14.68 kB)
TEXT
MMc-compare-classifications-tables.html (2.09 MB)
TEXT
MMc-compare-classifications-tables.Rmd (7.59 kB)
TEXT
MMc-sentiment-tweets-model-011-sentimentr.R (1.43 kB)
TEXT
MMc-sentiment-tweets-model-111-flair.py (1.74 kB)
TEXT
MMc-tweets_all-en_clr-emo-lemm-multi_no-spam.R (2.81 kB)
TEXT
MMc-tweets-to-vec-roberta-twitter-umap-clustering-analysis_v0-1-4_latest.html (3.72 MB)
TEXT
MMc-tweets-to-vec-roberta-twitter-umap-clustering-analysis.Rmd (13.81 kB)
TEXT
MMc-tweets-to-vec-roberta-twitter-umap-clustering.py (1.85 kB)
1/0
22 files

Supplementary materials for "Towards a study of everyday geographic information: Bringing the everyday into view"

software
posted on 2023-11-20, 15:31 authored by Stefano De SabbataStefano De Sabbata, Katy BennettKaty Bennett, Zoe Gardner

This repository includes the code, logs and outputs that support the findings of this study published in the paper listed below (De Sabbata et al., forthcoming). The documents include code developed in R, RMarkdown (alongside the HTML files obtained by compiling it) and Python, as well as a document reporting the F1 scores for each one of the two classification models.


De Sabbata, S., Bennett, K., & Gardner, Z. (forthcoming). Towards a study of everyday geographic information: Bringing the everyday into view. Environment and Planning B: Urban Analytics and City Science. https://doi.org/10.1177/23998083231217606

Funding

Mapping multiculture: disrupting representations of an ethnically diverse city

Leverhulme Trust

Find out more...

History

Usage metrics

    School of Geography, Geology and the Environment

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC