
A CloudSim extension for evaluating security
overhead in workflow execution in clouds

Henrique Yoshikazu Shishido
1University of São Paulo
São Carlos, SP, Brazil

2Federal University of Technology of Paraná
Cornélio Procópio, PR, Brazil
shishido@{usp.br,utfpr.edu.br}

Júlio Cezar Estrella,
Claudio F. Motta Toledo

University of São Paulo
São Carlos, SP, Brazil

{jcezar,claudio}@icmc.usp.br

Stephan Reiff-Marganiec
Department of Computer Science,

University of Leicester,
Leicester, United Kingdom

srm13@le.ac.uk

Abstract—Workflow scheduling algorithms for cloud environ-
ments are extensively studied using workflow management system
simulators. The common criteria covered by algorithms and
addressed in simulators are makespan, monetary cost, reliability,
and energy consumption. Beyond these criteria, security is also
a criterion and has been investigated recently. Scientific and
business workflows typically handle sensitive and big data that
can influence the makespan and cost significantly when a schedul-
ing algorithm applies security services to these data. However,
simulators for workflow execution do not address the overhead
produced by applying security services to sensitive data. In this
paper, we propose an extension for workflow simulator to support
security services. We considered seven steps for measuring
security overheads on workflow execution. The extension was
validated by executing a real-world workflow applying three types
of security services namely authentication, integrity verification,
and encryption. Our extension proved useful for simulating
workflow execution applying security services on sensitive data
and analyzing the effects of security on makespan, cost and
security criteria.

Index Terms—simulator,security,overhead,workflow,scheduling

I. INTRODUCTION

Cloud computing is a distributed paradigm that delivers on-
demand computing resources over the internet on a pay-for-use
basis. The three primary service models in clouds are Software
(SaaS), platform (PaaS), and infrastructure as a service (IaaS).
The latter provides computing resources (servers, storage, and
networking) so that organizations do not need to invest in
local infrastructure, high-performance hardware, and human
resources for its management. IaaS also allows the scaling of
infrastructure for supporting dynamic workloads [1]. Despite
the advantages of using IaaS, some users are resisting its
adoption, with security one of the main reasons given [2].

Many areas have become data-driven, and new scientific and
business knowledge is found by putting together data analysis
and knowledge discovery pipelines using a workflow applica-
tion model [3]. Directed Acyclic Graph (DAG) is commonly
used to represent workflows, where each node represents a
task, and an edge is task dependence [4]. Workflows can be
classified as either business or scientific. Business workflows
are developed by business analysts, while the scientific ones

typically involve more data and are modeled by scientists.
Both business and scientific workflows face issues including
the execution in distributed and heterogeneous resources and
security [5]. Scientific workflows tend to take longer makespan
due to having to apply security services to big data.

Workflow scheduling in a cloud environment has been stud-
ied considering different criteria (makespan, cost, energy, and
reliability) [6]. Security is a criterion more recently addressed
in scheduling algorithms when workflows are executed in
cloud environment [7]–[13]. Scheduling algorithms are com-
monly developed using simulated experiments. Workflow sim-
ulators allow users to determine the correctness and efficiency
of a scheduling algorithm before the algorithm is deployed in
real systems. Another benefit of workflow simulators is that
they permit to study a problem at different levels of abstraction
with no money spent on renting cloud infrastructure. The sim-
ulation tools commonly used for workflow execution are based
on the CloudSim toolkit [14] such as WorkflowSim [15], Dy-
namicCloudSim [16] and SimpleWorkflow. These simulators
can (a) parse workflow description files; (b) consider different
computing resources; (c) change scheduling algorithms, and;
(d) show execution metrics like cost and makespan. However,
security is a fundamental aspect that is not addressed by these
simulators. Neglecting the overhead resulting from applying
security services to big data workflows may produce incorrect
makespan and cost in the simulation of workflow executions.

In this paper, we (1) introduce an extension for simulations
to consider security aspects in workflow execution in clouds.
We have introduced a model that can receive a scheduling
encoding containing VM types and security parameters for
each task to compute the cost, makespan, and risk of success
from malicious attacks. We also (2) implemented our exten-
sion in the WorkflowSim tool and validate it using a real-
world workflow. To the best of our knowledge, the extension
presented here provides one of the first studies into how to
simulate the overhead applying security services in workflow
execution in a cloud. Nevertheless, this study does not cover
security approaches using hybrid clouds, where sensitive tasks
are placed in private clouds, while the non-sensitive tasks are
executed in public clouds.

The remainder of the paper proceeds as follows: security
issues in clouds are presented in Section II. A case study of a
workflow simulator is shown in Section III. The requirements
for workflow simulation considering security services are
discussed in Section IV. The case study of a framework based
on security simulation and its usage example are presented
in Sections V and VI. Finally, Section VII establishes the
concluding remarks and future directions of this research.

II. SECURITY OF WORKFLOW EXECUTION IN CLOUDS

The present study relies on the applying of security services
to sensitive tasks as a protection measure against malicious
attacks in workflow execution in clouds. Security is defined
herein as a quantitative assessment of the level of protection
afforded to tasks that handle sensitive data in a workflow
applying security services on sensitive tasks. A sensitive task
is defined as a workflow’s task which has input or output data
that should not be made public and should only be disclosed
under limited circumstances. Users must be authorized to ac-
cess sensitive data since the unauthorized disclosure, alteration
or destruction may cause perceptible damage to the institution.

There are several ways to protect sensitive data from ma-
licious attacks. In this study, we consider protecting them
through adopting security services for authentication, integrity
verification, and encryption. Authentication services are ap-
plied to avoid unauthorized access or disclosure when the task
execution involves the transmission of data over a network. It
is the process of confirming the identification of an entity (user,
systems, machines, etc.) that is attempting to access resources.
Authentication is often confused with authorization. While
the authentication process verifies an identity, authorization
verifies that the entity has the right permissions to access the
requested resource.

Public clouds are characterized by multi-tenancy so that
different users can be allocated in the same resource. This
scenario creates conditions for tampering attacks, in which a
malicious user could modify the data due to network issues.
It is interesting that security systems use integrity verifica-
tion services to ensure the accuracy and consistency of data
transmitted. In workflow execution, an integrity service has
the same intent, which is to certify that a data from one task
is received by another one precisely equal it was sent.

The processing of a workflow task which involves data
must use a readable format by the application. However,
the transmission of sensitive data from a task to another
one cannot be performed using a readable format. Therefore,
encrypting data using encryption algorithms reduces the risk of
data disclosure in a multi-tenant environment. Encrypted data
is also called cipher-text, while unencrypted data is known as
plain-text. Encryption algorithms typically translate plain-text
into cipher-text so that only users with access to a decryption
key or password can read it. There are two types of data
encryption algorithms: asymmetric and symmetric encryption.
Symmetric-key algorithms use the same secret key for en-
crypting and decrypting a data. Symmetric-key algorithms are
faster than asymmetric encryption, but the sender-side must

exchange the encryption key with the recipient before the
decryption process. Asymmetric cryptography, also called as
public-key cryptography, uses one public and one private key.
The public key may be shared with everyone, while the private
one must be protected. Anyone can encrypt a message using
the recipient’s public key. However, the message in question
can be only decrypted by the recipient’s private key. This
characteristic makes asymmetric cryptography also accomplish
an authentication function.

These three types of security services are considered in our
execution model for sensitive data protection, but there are
other types of security services that can support data protection
which can easily be added to the simulation model.

III. CASE STUDY: WORKFLOWSIM

The performance evaluation of workflow scheduling algo-
rithms in real infrastructure is complex, time consuming and
costly. As a consequence, simulation-based experiments have
been consolidated as an acceptable way to evaluate workflow
systems. Simulations reduce the complexity of the experimen-
tal setup, save effort in workflow execution, and enable a
controlled environment for reproduction of experiments.

In the midst of workflow system simulators, WorkflowSim
[15] is a tool developed at the University of Southern Califor-
nia, which extends the CloudSim toolkit by providing a layer
of workflow management. WorkflowSim follows CloudSim’s
core engine, which iterates over a future-event list. Each event
is related to a simulation entity. WorkflowSim extracts the
typical features present in various workflow management sys-
tems (WMS) for handling workflow execution. WorkflowSim
also covers task scheduling and execution overheads. The
model adopted in WorkflowSim is based on the Pegasus
workflow management system [17] as shown in Figure 1. It
contains a Workflow Mapper for mapping abstract workflows
to concrete workflows that are dependent on execution sites;
a Workflow Engine to parse the data dependencies, and; a
Workflow Scheduler to associate tasks to computing resources.

Submit Host

Clustering
Engine

Workflow
Engine

Workflow
Scheduler

Local
Queue

Workflow
Mapper

Remote scheduler

Execute site

Failure
Monitor

Failure
Monitor

Tasks

Compute
resources

Tasks

Fig. 1. WorkflowSim overview. The area surrounded by dashed lines is
supported by CloudSim [15].

Listing 1. Simplified example of DAX file.
<job id="ID0001" name="parseData" length="385928">
<uses file="initial.zip" link="input" size="105832"/>
<uses file="a.zip" link="output" size="43659"/>

</job>
<job id="ID0002" name="processing" length="1388">
<uses file="a.zip" link="input" size="43659"/>
<uses file="b.zip" link="output" size="15659"/>

</job>
<job id="ID0003" name="storeResults" runtime="64851">
<uses file="b.zip" link="input" size="15659"/>
<uses file="c.zip" link="output" size="257271"/>

</job>
<child ref="ID0002>
<parent ref="ID0001>

</child>
<child ref="ID0003>

<parent ref="ID0002">
</child>

Workflow Mapper

Workflows can be represented using Directed Acyclic
Graphs (DAGs), where each node represents a task to be
computed, and edges are the data flow between jobs. The
Workflow Mapper component is responsible for importing
DAG files in XML format as shown in Listing 1. Each task
is represented by tag <job> containing task identification id,
name of task name and task processing length attributes.
Moreover, tag <uses> represent which are the input and
output data of a task. Tag <child> describes the dependency
of each task that can contain one or more parent tasks
represented by tag <parent>, except the entry tasks of the
workflow. After mapping, the Workflow Mapper builds a task
list and associates these tasks to an execution site.

Workflow Engine

The Workflow Engine controls the execution flow based on
task dependencies to assure that a task can only be executed
if all parent tasks have finished successfully. The Workflow
Engine works together with the Workflow Scheduler, only
releasing ready tasks to the scheduler.

Workflow Scheduler and Job Execution

According to tasks marked ready by the Workflow Engine,
the Workflow Scheduler associates tasks to virtual machines
based on the scheduling algorithm selected. WorkflowSim
considers static (offline) and dynamic (online) scheduling
algorithms. For the former, tasks are assigned to a VM instance
before the workflow execution. In dynamic scheduling, tasks
are associated with virtual machines according to their idleness
during workflow execution. The essential difference between
these two scheduling approaches, it is that static scheduling
has already assumed the order and complexity of tasks at the
start, while dynamic scheduling is used where resources can
change due to run-time load and availability.

WorkflowSim introduced different layers of overheads and
failures, which improves the accuracy of the simulation. How-
ever, security overhead feature still is not present in either
WorkflowSim nor the other cited simulators.

IV. REQUIREMENTS FOR SECURITY SIMULATION

The security of sensitive data can be supported using au-
thentication, integrity verification, and encryption algorithms.
These algorithms can be available as security services and
applied to workflow tasks for protecting sensitive data against
malicious attacks in clouds. In this section, we describe the
requirements to enable the evaluation of applying security
services in workflow execution. A proposal of adding security
overheads in the simulation of workflow execution is presented
in Figure 2.

The first step concerns how to describe a workflow file
appropriately. It is necessary to model a workflow considering
the identification, instruction length and dependencies of each
task. In the next step, the workflow must be parsed setting up
the tasks and dependencies for controlling the workflow exe-
cution. The security overheads can be addressed by identifying
which tasks handle sensitive data and which security services
will be applied. To identify sensitive tasks, we propose an
encoding that provides an extensible way to represent which
tasks require security attention setting up security services as
shown in Figure 3. Each task is protected by a set of security
services including authentication, integrity verification, and
encryption algorithms. Several algorithms offer different levels
of protection and lead to different overheads. Algorithms with
higher security levels demand more time to process the same
amount of data. We propose a SecurityAlgorithms entity
containing various algorithms for adapting the security re-
quirement of each task. Associating different levels of security
according to the task security requirements can produce less
overhead and, consequently, reduce the makespan and the
cost of a workflow execution. The process of task execution
applying security services is shown in Figure 4. First, task ti
needs to be authenticated for transferring input data from the
predecessor(s) task(s). After the transferring of all input data
is complete, an integrity verification is performed. If the data
has not been tampered with, the task execution can proceed.
At the end, the output data are submitted to an encryption
service before it will be sent to the child task(s).

The encoding array enc showed in Figure 3 also defines the
VM instance type for each task ti in pos[4∗i]. Clouds provide
a variety of heterogeneous computing resources, and each one
is characterized by different CPU capacity, memory, storage,
network bandwidth, cost, etc. We propose the VmInstances

1.	Workflow 2.	Parse	
workflow

SecurityAlgorithms
Integrity	check

Authentication

Confidentiality

3.	Scheduling	
encoding

Vm Instances

4.	Update	tasks	
length	with	security	
services	overhead

6.	Execution	
Engine

7.	WfExecStats
Cost
Makespan
Risk

5.	Scheduler

Fig. 2. Simulation of workflow execution adding security overhead.

41 53

V
M

authentication

Integrity verification

encryption

Task 1

13 22

V
M

authentication

Integrity verification

encryption

Task 2

42 51

V
M

authentication

Integrity verification

encryption

Task N

.	.	.

Fig. 3. Example of scheduling encoding using meta-heuristic optimization.

entity for optimization purposes since security algorithms take
different time for executing in different VM instances. Using
this encoding allows optimizing the workflow scheduling
using meta-heuristic algorithms. The levels of authentication,
integrity verification, and encryption services for a task ti are
defined in pos[4 ∗ i + 1], pos[4 ∗ i + 2], and pos[4 ∗ i + 3],
respectively. This codification considers that higher values
correspond to faster VM instances or safer security services.

In our model, we propose to add the security overhead into
the task length. We assumed a, g, c to represent authentica-
tion, integrity verification and encryption, respectively. The
authentication service takes a constant time, while integrity
verification and encryption services are data size dependent.
Simulators of workflow management systems typically rep-
resent the task complexity by using the million instructions
(MI) metric. The security overhead must be represented in the
same manner. Each security service is measured using different
metrics. Authentication is measured in milliseconds (ms),
while integrity verification and encryption services are based
on kilobytes per second (kB/s). Eq. 1 and 2 show the function
to convert the security length SLβ applying security services
on task ti, where data size is the amount of data submitted
to a security service β, secAlgβ represents the throughput
of a security service, and cpu capacity corresponds to the
CPU speed in MI. After SLβ computed for the three security
services, they are added to task ti length.

SLβ(ti) = secAlgβ ∗ cpu capacity, β ∈ {a} (1)

SLβ(ti) =
data size

secAlgβ
∗ cpu capacity, β ∈ {g, c} (2)

1.	Authentication	service

2.	Data	transfer

3.	Check	
integrity

Execution	of	
task

4.	Encryption	
service

Output	
data

Task	ti-1 Task	t
\ \

Fig. 4. Task execution process applying security services.

In the scheduling phase, all workflow tasks are assigned
to available compute resources. If a scheduling encoding was
previously specified in the initialization of simulation, the
scheduler is skipped. Finally, all tasks are submitted to the
workflow engine which controls the execution flow of tasks.
Finally, the workflow execution metrics as cost, makespan, and
security metrics are displayed to the user.

V. CASE STUDY: WFSECURITY EXTENSION

The proposed extension for workflow simulation concerning
security overhead integrates into the design of the Work-
flowSim toolkit (version 1.0). Figure 5 depicts the class
diagram of our work, called WfSec. The blue classes al-
ready exist in WorkflowSim, and the white ones are pro-
posed for the extension. The class TaskSec extends the
original Task class using three members: VM_Instances,
Security_Algorithms and Encoding, which are required
for computing the overhead.

Class TaskSec receives the workflows tasks and its de-
pendencies from the workflow DAX file. This scheduling
is supported by the Encoding interface, which receives the
scheduling map represented in the schedEncoding array
as shown in Figure 3. Representing the scheduling map as
an array is useful for scheduling optimization where meta-
heuristics algorithms can tune VM instances and security
parameters.

Class TaskSec defines an attribute security_length,
which is summed to the task processing length. The input data
dataIn and output data dataOut are submitted to integrity
verification service and encryption services, respectively, as
previously shown in Figure 2. The security requirements
for each task are set for computing the QoS met. Each
task computes the security risk using the implementation of
computeRisk() method based on the security provided in
the scheduling process and the security requirements of a
task. This method uses Security_Algorithms class to get
the security levels of authentication, integrity verification, and
encryption algorithms.

After reading the VM instances and security parameters of
each task, the essential step can be performed. The security
overhead is calculated by (Eq. 1 and Eq. 2) and embed-
ded to the attribute length of task. At the end of the
workflow execution, the simulator shows a summary of the
makespan, cost, and the security metrics computed by calling
printSecurity(), which is implemented computing each
tasks risk value according to the security model defined.

VI. USAGE EXAMPLE

This extension is available on GitHub1. As part of the
ongoing research carried out by the authors’ group, the work-
flow management system simulator is employed in a study
on security- and cost aware workflow scheduling algorithms
in three publications [13], [18], [19]. The studies investigate
the application of meta-heuristic algorithms for optimizing the

1git://redmine.lasdpc.icmc.usp.br/lasdpc/wfsim security.git

+getAuth(idTask : int) : int
+getIntegrity(idTask : int) : int
+getConfidentiality(idTask : int) : int

Encoding_SCAS

+schedEncoding : int[]
+setSchedEncoding(ind : string)
+getVmInstance(idTask : int)

<<Interface>>
Encoding

+setSecurityAlgorithm() : void
+setVmToTasks(vmList : List<CondorVM>)

Scheduling_Algorithm

-taskList : List<Cloudlet>
-vmList : List<Vm>
-datacenterList : List<Datacenter>
-wfEngine : WorkflowEngine
+getTaskList() : List<Cloudlet>
+setTaskList(taskList : List<Cloudlet>) : void
+getVmList() : List<Vm>
+setVmList(vmList : List<Vm>) : void
+getDatacenterList() : List<Datacenter>
+setDatacenterList(datacenterList : List<Datacenter>) : void
+getWfEngine() : WorkflowEngine
+setWfEngine(wfEngine : WorkflowEngine) : void
+run()

BasePlanningAlgorithm

-schedEncoding : Encoding
+main() : void
+loadWorkflow(String path)

MainSimulation

+Authentication : Enum
+Integrity : Enum
+Cryptographic : Enum
-authLevels : double[]
-authThroughput : double[]
-integrityLevels : double[]
-integrityThroughput : double[]
-cryptLevels : double[]
-cryptThroughput : double[]
-lamda : double[]
-weight : double[]
-cpuSpeedUp : int
+getAuthOverhead() : double
+getIntegrityOverhead() : double
+getConfidentialityOverhead() : double
+getOverhead() : long

Security_Algorithms

+Instances : Enum
-vCPU : int[]
-mflops : int[]
-memory : int[]
-storage : long[]
-cost : double[]
-VMM : string[]
-bandwidth : long[]

VM_Instances

Task

-dataIn : long
-dataOut : long
-securityLength : long
-secRequirements : double[]
+getDataIn() : long
+setDataIn(dataIn : long) : void
+getDataOut() : long
+setDataOut(dataOut : long) : void
+setSecurityLength(length : long) : void
+computeRisk() : double

TaskSec

+printMakespan(list : Job[])
+printCost(list : Job[])
+printSecurity(list : Job[])

WfExecStats

WorkflowEngine

WorkflowParser

WorkflowPlanner

WorkflowScheduler

WorkflowDatacenter
1

1..*

1..*

< < c a l l > >< < s e n d > >

< < u s e > >

< < u s e > >

< < u s e > >

< < c a l l > >

<<set security length>>

< < u s e > >

VM
Instances

Security
Overhead

< < u s e > >

< < s e n d > >

Powered By Visual Paradigm Community Edition

Fig. 5. Class diagram of WfSecurity extension. Classes in blue color represents WorkflowSim core, while the white ones represents WfSec extension.

assignment of different VM instances and security services
for each task. In a first stage, we designed this extension for
WorkflowSim aimed to evaluate scheduling algorithms that
preserve the security of sensitive data.

In the WorkflowSim with WfSec extension, we implemented
the MainSimulation class. Initially, we set the scheduling
map which implements the Encoding interface following the
encoding presented in Figure 3. The Security_Algorithms
class was implemented by adding the list of algorithms and its
corresponding throughput and security level as shown in Table
I. Some encryption or hashing algorithms as AES and SHA256
are not absent due it was not benchmarked in the study that
we followed. Also, the VM_Instances class was implemented
based on Amazon EC2 instances and pricing model [20].

We considered a risk rate which represents the risk probabil-
ity of a task ti of the lth security service. The computeRisk()
method of the TaskSec class was implemented considering
different security services computed by Eq. 3.

P (ti, sl
l
i) = 1− exp(−λl(srli − slli)), l ∈ {a, g, c} (3)

The risk coefficient λl can vary from one security service
to another. For instance, a VM may be attacked three times
by snooping attacks, two alteration attacks, and four spoofing
attacks in a given period. The probability of a security failure
is represented by negative exponent and it grows with the
difference srli − slli, where srli is the security level required
to a task ti in each l security service, and slli represents the

security level granted to a task ti for each l security service.
And, the risk probability of a task ti is computed by Eq. 4.

P (ti) = 1−
∏

l∈{a,g,c}

(1− P (ti, slli)) (4)

To compute the overall risk of workflow execution, Eq. 5
is assumed.

P (T) = 1−
∏
ti∈T

(1− P (ti)) (5)

The methods of the WfExecStats class are called to
show the execution summary. We run simulations using the
Epigenomics workflow with 997 tasks with 1TB of data per
task. We varied the number of required secure tasks for
evaluating the overhead influence on makespan, cost, and risk
of data leakage. We set the cheapest VM for all tasks and
maximum level of security services for each secured required
tasks. Figure 6(c) shows the risk of data leakage of a workflow
execution assuming that all workflow tasks are sensitive. As
can be seen, there is a high risk (about 100%) when less than
993 tasks are protected. The risk is only below 50% and closes
to 0% when 995 and 997 tasks respectively are secured. This
is typical behavior for the security metrics in computational
systems, where any failure can result in significant losses for
a user or organization. To evaluate the overhead produced by
security services applied to tasks, we present the makespan
analysis in Figure 6(a). As expected, the execution time grew
as the number of tasks protected increased. The makespan
was more prolonged when the latest workflow tasks were
secured because they have the highest amount of output data

where the most costly security service (encryption) is applied.
The total execution cost was also evaluated and shown in
Figure 6(b). Because the virtual machine billing model is
based on hours of use, it can be noted that the execution
cost is approximately US$217 for 720 secured tasks, and
subsequently increased significantly up to US$250 for all tasks
secured. This was due to increased execution time by security
services and consequently resulted in another hour of virtual
machine rentals. It is important to note that the types of virtual
machines could be optimized so that tasks requiring more
processing were executed in faster instances. However, since
the objective of this study is to evaluate the impact of security
services on the simulations, we only set one type of instance
for execution.

VII. CONCLUDING REMARKS

Workflow scheduling algorithms with awareness of security
aspects have been investigated recently. Studies that involve
security-based scheduling algorithms consider the application
of security services typically to sensitive tasks. In this paper,
we have proposed an extension for simulation of security
overhead and risk analysis in workflow executions. It provides
an extensible structure, which allows adding security services
parameters and VM types for workflow simulation. Besides,
the adaptability of this extension allows the implementation of
different models of risk analysis. The risk model implemented
shows that it is necessary to ensure almost all workflow tasks
so that the security risk is reasonably reduced.

Although our proposed extension addresses security over-
heads by applying security services to sensitive tasks in a
unique cloud provider, there is another approach for securing
workflow execution, which is based on allocating sensitive
tasks to private clouds and the non-sensitive ones to public
clouds. Then, further research should be carried out to compute
cost, makespan and security implications allocating tasks to
hybrid clouds, bearing in mind that data transmission between
tasks is also risky.

TABLE I
SAMPLE LIST OF SECURITY ALGORITHMS FOR WORKFLOW SCHEDULING

IMPLEMENTED IN THE WFSECURITY EXTENSION.

Security Service Algorithm Security level Throughput (kB/ms)

Encryption

SEAL 0.08 168.75
RC4 0.14 96.43
Blowfish 0.36 37.50
Knufu/Khafre 0.40 33.75
RC5 0.46 29.35
Rijndael 0.64 21.09
DES 0.90 15.00
IDEA 1.00 13.50

Integrity verification

MD4 0.18 23.90
MD5 0.26 17.09
RIPEMD 0.36 12.00
RIPEMD128 0.45 9.73
SHA1 0.63 6.88
RIPEMD160 0.77 5.69
TIGER 1.00 4.36

Authentication
HMAC MD5 0.55 90 (ms)
HMAC SHA 1 0.91 148 (ms)
CBC MAC AES 1.00 163 (ms)

0 200 400 600 800 1000

215
220
225
230
235
240
245
250

No. of secured tasks

C
os

t (
U

$)

(a)

0 200 400 600 800 1000

40

45

50

55

60

65

No. of secured tasks

M
ak

es
pa

n
(h

ou
r)

(b)

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

AllData$Percentual[0:950]

Al
lD
at
a$
R
is
k[
0:
95
0]

990 991 992 993 994 995 996 997AllData$Percentual[990:997]

Al
lD
at
a$
R
is
k[
99
0:
99
7]

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0

AllData$Percentual[0:950]

Al
lD
at
a$
R
is
k[
0:
95
0]

990 991 992 993 994 995 996 997AllData$Percentual[990:997]

Al
lD
at
a$
R
is
k[
99
0:
99
7]

0.0

0.2

0.4

0.6

0.8

1.0

//

No. of secured tasks

R
is

k

(c)
Fig. 6. Workflow execution metrics. (a) Monetary cost applying security
services in workflow’s tasks; (b) Makespan applying security services in
workflow’s tasks; (c) Risk applying security services in workflow’s tasks.

ACKNOWLEDGMENTS

The authors acknowledge CAPES, FAPESP (2011/09524-
7 and 2013/01818-7), CEPID-CeMEAI (2013/07375-0), and
CNPq for the resources provided, USP for the infrastructure
offered, and UTFPR for the scholarship awarded to Henrique
Yoshikazu Shishido.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B. Fernan-
dez, “An analysis of security issues for cloud computing,” J of Internet
Serv App, vol. 4, no. 1, pp. 1–13, 2013.

[3] L. Bertram, A. Ilkay, B. Chad, H. Dan, J. Efrat, J. Matthew, L. E. A.,
T. Jing, and Z. Yang, “Scientific workflow management and the ke-
pler system,” Concurrency and Computation: Practice and Experience,
vol. 18, no. 10, pp. 1039–1065, 2006.

[4] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Gener Comput Syst, vol. 25, no. 5, pp. 528 – 540, 2009.

[5] R. Barga and D. Gannon, Scientific versus Business Workflows.
Springer, 2007, pp. 9–16.

[6] M. Rodriguez and R. Buyya, “A taxonomy and survey on scheduling
algorithms for scientific workflows in iaas cloud computing environ-
ments,” Concurrency Computation, vol. 29, no. 8, 2017.

[7] S. Sharif, J. Taheri, A. Y. Zomaya, and S. Nepal, “Mphc: Preserving
privacy for workflow execution in hybrid clouds,” in Int Conf Parallel
and Distrib Comp App Tech, 2013, pp. 272–280.

[8] H. Liu, A. Abraham, V. Snášel, and S. McLoone, “Swarm scheduling
approaches for workflow applications with security constraints in dis-
tributed data-intensive computing environments,” Inf Sci, vol. 192, pp.
228–243, 2012.

[9] L. Zeng, B. Veeravalli, and X. Li, “Saba: A security-aware and budget-
aware workflow scheduling strategy in clouds,” J Parallel Distrib Comp,
vol. 75, pp. 141 – 151, 2015.

[10] Z. Li, J. Ge, H. Yang, L. Huang, H. Hu, H. Hu, and B. Luo, “A security
and cost aware scheduling algorithm for heterogeneous tasks of scientific
workflow in clouds,” Future Gener Comput Syst, vol. 65, pp. 140 – 152,
2016.

[11] X. Zhu, Y. Zha, P. Jiao, and H. Chen, “Security-aware workflow
scheduling with selective task duplication in clouds,” in Proc High
Perform Comput Symp, 2016, pp. 1–8.

[12] C. Jianfang, C. Junjie, and Z. Qingshan, “An optimized scheduling
algorithm on cloud workflow using discrete particle swarm,” Cybern
Inf Tech, vol. 14, no. 1, pp. 25–39, 2014.

[13] H. Y. Shishido, J. C. Estrella, C. F. M. Toledo, and M. S. Arantes,
“Genetic-based algorithms applied to a workflow scheduling algorithm
with security and deadline constraints in clouds,” Computers & Electri-
cal Engineering, vol. 69, pp. 378 – 394, 2018.

[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[15] W. Chen and E. Deelman, “Workflowsim: A toolkit for simulating scien-
tific workflows in distributed environments,” in IEEE 8th International
Conference on E-Science, 2012, pp. 1–8.

[16] M. Bux and U. Leser, “Dynamiccloudsim: Simulating heterogeneity in
computational clouds,” Future Generation Computer Systems, vol. 46,
pp. 85 – 99, 2015.

[17] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17 – 35, 2015.

[18] H. Y. Shishido, J. C. Estrella, and C. F. M. Toledo, “Multi-objective
optimization for workflow scheduling under task selection policies in
clouds,” in 2018 IEEE Congress on Evolutionary Computation (CEC),
2018, pp. 1–8.

[19] H. Y. Shishido, J. C. Estrella, C. F. M. Toledo, and S. Reiff-Marganiec,
“(wip) tasks selection policies for securing sensitive data on workflow
scheduling in clouds,” in 2018 IEEE International Conference on
Services Computing (SCC), 2018, pp. 233–236.

[20] Amazon. (2018, jun) Instances types of amazon ec2. [Online].
Available: https://aws.amazon.com/pt/ec2/instance-types/

