University of Leicester
FG2021_Latex_template.pdf (7.42 MB)

Dense Face Detection via High-level Context Mining

Download (7.42 MB)
conference contribution
posted on 2021-09-02, 08:26 authored by Q Geng, Do Liang, Huiyu Zhou, L Zhang, H Sun, N Liu

The appearance degradation caused by low resolution is the core problem of small face detection. Therefore, a natural approach is to assemble information from the context. This paper focuses on how to use high-level contextual information to improve the abilities of anchor-based detectors to detect dense and degenerate faces. We tap the spatial contextual information on the overall view based on the density map, and propose the prior of face co-occurrence for inferred bounding-boxes coordination. We also propose score-size-specific non-maximum suppression to replace the traditional non-maximum suppression at the end of anchor-based detectors. According to the inferred face boxes' quantity, score and size, the proposed synthetical solution reduces false positives and increases true positives. Our method does not require additional training, which is model-independent and can be embedded into existing face detectors. We also propose a dataset - Crowd Face for face detection, which is full of challenges. We expect to supply enough samples to highlight the difficulties of detecting dense and degenerate faces. We embed our proposed methods into state-of-the-art face detectors on massively benchmarked face datasets. Compared with the prior art on the WIDER FACE hard set, our method increase an Average Precision of 0.1 %-1.3%. On Crowd Face, it increases an Average Precision of 1 % – 6%. Dataset is available on: 


Author affiliation

School of Informatics


2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 15-18 December 2021, Jodhpur, India


  • AM (Accepted Manuscript)

Published in

2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021)





Acceptance date


Copyright date


Available date


Spatial coverage

Jodhpur, India



Usage metrics

    University of Leicester Publications