University of Leicester
Browse
- No file added yet -

New Voter Design Enabling Hot Redundancy for Asynchronous Network Nodes

Download (489.68 kB)
conference contribution
posted on 2020-05-18, 12:16 authored by Felix Siegle, Tanya Vladimirova, Omar Emam, Jorgen Ilstad
The use of the Karhunen-Loéve Transform (KLT) for spectral decorrelation in compression of hyperspectral satellite images results in improved performance. However, the KLT algorithm consists of sequential processes, which are computationally intensive, such as the covariance matrix computation, eigenvector evaluation and matrix multiplications. These processes slow down the overall computation of the KLT transform significantly. The traditional KLT can only offer lossy compression; therefore, a reversible KLT algorithm, named the Integer KLT, is used for lossless compression. The Integer KLT includes more computational processes and, hence, it requires a longer processing time. The acceleration of these processes within the context of limited power and hardware budgets is the main objective of this paper. The computations of each of these processes are investigated thoroughly. Subsequently, a novel adaptive architecture for the computation of the KLT and the Integer KLT is proposed. The proposed system improves the traditional KLT performance compared with a previous architecture, and offers significant improvement for hyperspectral data with a larger spectral dimension. The experiments showed an overall improvement of up to 4.9%, 11.8% and 18.4% for 8, 16 and 32 spectral bands, respectively. In addition, this paper addresses novel hardware aspects of the Integer KLT implementation. The scalability of this hardware architecture can offer much higher level of parallel computing than processor platforms.

Funding

Sponsorship from ESA under the NPI Programme, AirbusDefence and Space, UK and the University of Leicester is gratefully acknowledged.

History

Citation

2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, 2014, pp. 112-119

Author affiliation

Department of Engineering

Source

Proceedings of the 2014 NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2014

Version

  • AM (Accepted Manuscript)

Published in

2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)

Pagination

112-119

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

isbn

9781479953561

Copyright date

2014

Available date

2014-08-21

Publisher version

https://ieeexplore.ieee.org/document/6880166

Spatial coverage

Leicester, UK

Temporal coverage: start date

2014-08-14

Temporal coverage: end date

2014-08-17

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC