posted on 2018-05-24, 08:34authored byChristoph Dürr, Thomas Erlebach, Nicole Megow, Julie Meißner
We introduce a novel model for scheduling with explorable uncertainty. In this model, the processing time of a job can potentially be reduced (by an a priori unknown amount) by testing the job. Testing a job j takes one unit of time and may reduce its processing time from the given upper limit p j (which is the time taken to execute the job if it is not tested) to any value between 0 and pj. This setting is motivated e.g. by applications where a code optimizer can be run on a job before executing it. We consider the objective of minimizing the sum of completion times on a single machine. All jobs are available from the start, but the reduction in their processing times as a result of testing is unknown, making this an online problem that is amenable to competitive analysis. The need to balance the time spent on tests and the time spent on job executions adds a novel flavor to the problem. We give the first and nearly tight lower and upper bounds on the competitive ratio for deterministic and randomized algorithms. We also show that minimizing the makespan is a considerably easier problem for which we give optimal deterministic and randomized online algorithms.
Funding
This research was carried out in the framework of Matheon supported
by Einstein Foundation Berlin, the German Science Foundation (DFG) under contract
ME 3825/1 and the Bayerisch-Französisches Hochschulzentrum (BFHZ). The second author
was supported by a study leave granted by University of Leicester.
History
Citation
Leibniz International Proceedings in Informatics, LIPIcs, 2018, 94
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Informatics
Source
9th Innovations in Theoretical Computer Science Conference (ITCS 2018), MIT, Cambridge, Massachusetts, USA