posted on 2009-12-08, 16:17authored byM. Grottadaurea, Aldo Rona
At typical landing speeds, the cylindrical cavity flow that develops past an aircraft fuel
vent displays tonal convective streamwise instabilities. The higher frequency range of the noise radiated by such a cavity compared to flap noise is perceived by a ground observer as louder with respect to what its amplitude in decibel would suggest, due to the dB(A) weighting. A threedimensional time-dependent numerical model of a cylindrical cavity flow is obtained using an in-house three-dimensional compressible laminar solver. This simulation predicts the flow instability and gives a preliminary understanding of the influence of the inflow momentum thickness (µ) on the flow unsteadiness. Time-dependent cavity flow models are obtained at two
different Reynolds numbers (Reµ) based on the inflow momentum thickness, Reµ = 8850 and Reµ = 10750, for two diameter to depth ratios (L/D), 0.71 and 2.5. The near-field sound pressure level (SPL), the pressure coefficient Cp, and the shear layer spanning the cavity are analyzed. The numerical experiments suggest that the deep cavity is characterized by a selfsustained instability and that the shallow cavity is characterized by a steady flow recirculation. The near-field SPL was compared with past Euler predictions to study the influence of the shear layer growth on the radiating pressure field. In the laminar predictions, it was found that the amplitude of the outgoing pressure waves is lower, due to a weaker interaction of the open
cavity shear-layer with the downstream solid edge.
History
Citation
Proceedings of the 14th International Congress on Sound and Vibration, Cairns, Australia, 9-12 July 2007, pp. 1-8
Published in
Proceedings of the 14th International Congress on Sound and Vibration
Available date
2009-12-08
Publisher version
http://www.iiav.org/icsv14/home.htm
Notes
This paper was published as Proceedings of the 14th International Congress on Sound and Vibration, Cairns, Australia, 9-12 July 2007, pp. 1-8.;The Fourteenth International Congress on Sound and Vibration (ICSV14) was sponsored by the International Institute of Acoustics and Vibration (IIAV) and the Australian Acoustical Society (AAS).