University of Leicester
Browse

ACE-FTS observation of a young biomass burning plume: first reported measurements of C2H4, C3H6O, H2CO and PAN by infrared occultation from space

Download (857.99 kB)
journal contribution
posted on 2016-02-10, 11:08 authored by P-F. Coheur, H. Herbin, C. Clerbaux, D. Hurtmans, C. Wespes, M. Carleer, S. Turquety, C. P. Rinsland, John J. Remedios, D. Hauglustaine, C. D. Boone, P. F. Bernath
In the course of our study of the upper tropospheric composition with the infrared Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE–FTS), we found an occultation sequence that on 8 October 2005, sampled a remarkable plume near the east coast of Tanzania. Model simulations of the CO distribution in the Southern hemisphere are performed for this period and they suggest that the emissions for this event likely originated from a nearby forest fire, after which the plume was transported from the source region to the upper troposphere. Taking advantage of the very high signal-to-noise ratio of the ACE–FTS spectra over a wide wavenumber range (750–4400 cm[Superscript: −1]), we present in-depth analyses of the chemical composition of this plume in the middle and upper troposphere, focusing on the measurements of weakly absorbing pollutants. For this specific biomass burning event, we report simultaneous observations of an unprecedented number of organic species. Measurements of C2H4 (ethene), C3H4 (propyne), H2CO (formaldehyde), C3H6O (acetone) and CH3COO2NO2 (peroxyacetylnitrate, abbreviated as PAN) are the first reported detections using infrared occultation spectroscopy from satellites. Based on the lifetime of the emitted species, we discuss the photochemical age of the plume and also report, whenever possible, the enhancement ratios relative to CO.

History

Citation

Atmospheric Chemistry And Physics, 2007, 7 (20), pp. 5437-5446 (10)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Atmospheric Chemistry And Physics

Publisher

Copernicus Publications on behalf of the European Geosciences Union

issn

1680-7316

eissn

1680-7324

Acceptance date

2007-10-15

Copyright date

2007

Available date

2016-02-10

Publisher version

http://www.atmos-chem-phys.net/7/5437/2007/

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC