University of Leicester
Browse

A High Spatial and Spectral Resolution Study of Jupiter’s Mid-infrared Auroral Emissions and Their Response to a Solar Wind Compression

Download (16.05 MB)
journal contribution
posted on 2023-06-26, 14:24 authored by James A Sinclair, Thomas K Greathouse, Rohini S Giles, John Lacy, Julianne Moses, Vincent Hue, Denis Grodent, Bertrand Bonfond, Chihiro Tao, Thibault Cavalié, Emma K Dahl, Glenn S Orton, Leigh N Fletcher, Patrick GJ Irwin

We present mid-infrared spectroscopy of Jupiter's mid-to-high latitudes using the Gemini-North/Texas Echelon Cross Echelle Spectrograph on 2017 March 17–19. These observations capture Jupiter's hydrocarbon auroral emissions before, during, and after the arrival of a solar wind compression on March 18, which highlights the coupling between the polar stratosphere and external space environment. In comparing observations on March 17 and 19, we observe a brightening of the CH4, C2H2, and C2H4 emission in regions spatially coincident with the northern duskside main auroral emission (MAE). In inverting the spectra to derive atmospheric information, we determine that the duskside brightening results from upper stratospheric (p < 0.1 mbar/z > 200 km) heating (e.g., ΔT = 9.1 ± 2.1 K at 9 μbar at 67fdg5N, 162fdg5W) with negligible heating at deeper pressures. Our interpretation is that the arrival of the solar wind enhancement drove magnetospheric dynamics through compression and/or viscous interactions on the flank. These dynamics accelerated currents and/or generated higher Poynting fluxes, which ultimately warmed the atmosphere through Joule heating and ion-neutral collisions. Poleward of the southern MAE, temperature retrievals demonstrate that auroral-related heating penetrates as deep as the 10 mbar level, in contrast to poleward of the northern MAE, where heating is only observed as deep as ∼3 mbar. We suggest that this results from the south having higher Pedersen conductivities and therefore stronger currents and acceleration of the neutrals, as well as the poleward heating overlapping with the apex of Jupiter's circulation, thereby inhibiting efficient horizontal mixing/advection.

History

Author affiliation

School of Physics & Astronomy, University of Leicester

Version

  • VoR (Version of Record)

Published in

The Planetary Science Journal

Volume

4

Issue

4

Pagination

76

Publisher

American Astronomical Society

eissn

2632-3338

Copyright date

2023

Available date

2023-06-26

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC