posted on 2024-03-08, 12:09authored byL Wei, J Cui, H Zhong, I Bolodurina, L Liu
Recently, the fog computing concept has been introduced into vehicular ad-hoc networks (VANETs) to formulate fog-based VANETs. Since the communication channels between vehicles and fog nodes are open and insecure, it is necessary to construct an authenticated key agreement (AKA) scheme for securing the channels. The existing AKA schemes have two main deficiencies. One is that the computational and communication overhead are not low enough to satisfy the requirements of delay-sensitive applications. The other is that the multi-Trusted-Authority (multi-TA) model has not been considered. To solve the deficiencies, we propose a lightweight and conditional privacy-preserving AKA scheme, where the main steps are designed with symmetric cryptography methods. The design can reduce the computational and communication overhead of the AKA process. Additionally, we consider the multi-TA model in the AKA process to solve the single-point-of-failure issue. By integrating Cuckoo filter into the multi-TA model, the secrecy of real identities of legal vehicles is guaranteed and the identity revocation function for illegal vehicles is supported in the AKA process. The security proof and analysis show that our proposed scheme satisfies the essential security and privacy requirements of VANETs. The performance analysis shows that our proposed scheme outperforms other related and represented schemes.
History
Author affiliation
School of Engineering, University of Leicester
Version
AM (Accepted Manuscript)
Published in
IEEE Transactions on Dependable and Secure Computing
Volume
20
Issue
1
Pagination
422 - 436
Publisher
Institute of Electrical and Electronics Engineers (IEEE)