A Novel Multi-modal Population-graph based Framework for Patients of Esophageal Squamous Cell Cancer Prognostic Risk Prediction
Prognostic risk prediction is pivotal for clinicians to appraise the patient’s esophageal squamous cell cancer (ESCC) progression status precisely and tailor individualized therapy treatment plans. Currently, CT-based multi-modal prognostic risk prediction methods have gradually attracted the attention of researchers for their universality, which is also able to be applied in scenarios of preoperative prognostic risk assessment in the early stages of cancer. However, much of the current work focuses only on CT images of the primary tumor, ignoring the important role that CT images of lymph nodes play in prognostic risk prediction. Additionally, it is important to consider and ex- plore the inter-patient feature similarity in prognosis when developing models. To solve these problems, we proposed a novel multi-modal population-graph based framework leveraging CT images including primary tumor and lymph nodes combined with clinical, hematology, and radiomics data for ESCC prognostic risk prediction. A patient population graph was constructed to excavate the homogeneity and heterogeneity of inter-patient feature embedding. More over, a novel node-level multi-task joint loss was proposed for graph model optimization through a supervised-based task and an unsupervised-based task. Sufficient experi mental results show that our model achieved state-of-the-art performance compared with other baseline models as well as the gold standard on discriminative ability, risk stratification, and clinical utility. The core code is available at https://github.com/wuchengyu123/MPGSurv.
History
Author affiliation
College of Science & Engineering Comp' & Math' SciencesVersion
- AM (Accepted Manuscript)
Published in
IEEE Journal of Biomedical and Health InformaticsPublisher
IEEEissn
2168-2194eissn
2168-2208Copyright date
2024Available date
2024-06-06Publisher DOI
Language
enPublisher version
Deposited by
Professor Huiyu ZhouDeposit date
2024-06-04Rights Retention Statement
- No