posted on 2018-04-20, 12:06authored byL. Aucott, D. Huang, Hongbiao Dong, S. W. Wen, J. Marsden, A. Rack, A. C. F. Cocks
A three-stage mechanistic model for solidification cracking during TIG welding of steel is proposed from in situ synchrotron X-ray imaging of solidification cracking and subsequent analysis of fracture surfaces. Stage 1—Nucleation of inter-gra nular hot cracks: cracks nucleate inter-granularly in sub-surface where maximum volumetric strain is localized and volume fraction of liquid is less than 0.1; the crack nuclei occur at solute-enriched liquid pockets which remain trapped in increasingly impermeable semi-solid skeleton. Stage 2—Coalescence of cracks via inter-granular fracture: as the applied strain increases, cracks coalesce through inter-granular fracture; the coalescence path is preferential to the direction of the heat source and propagates through the grain boundaries to solidifying dendrites. Stage 3—Propagation through inter-dendritic hot tearing: inter-dendritic hot tearing occurs along the boundaries between solidifying columnar dendrites with higher liquid fraction. It is recommended that future solidification cracking criterion shall be based on the application of multiphase mechanics and fracture mechanics to the failure of semi-solid materials.
History
Citation
Metallurgical and Materials Transactions A, 2018, 49 (5), pp. 1674-1682
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering
The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.