University of Leicester
Browse
MNRAS-2011-Guidorzi-2124-43.pdf (3.92 MB)

A faint optical flash in dust-obscured GRB 080603A: implications for GRB prompt emission mechanisms

Download (3.92 MB)
journal contribution
posted on 2012-10-24, 09:07 authored by S. Kobayashi, D. A. Perley, G. Vianello, J. S. Bloom, P. Chandra, D. A. Kann, W. Li, C. G. Mundell, A. Pozanenko, J. X. Prochaska, K. Antoniuk, D. Bersier, A. V. Filippenko, D. A. Frail, A. Gomboc, E. Klunko, A. Melandri, S. Mereghetti, A. N. Morgan, P. T. O'Brien, V. Rumyantsev, R. J. Smith, I. A. Steele, N. R. Tanvir, A. Volnova
We report the detection of a faint optical flash by the 2-m Faulkes Telescope North simultaneously with the second of two prompt γ-ray pulses in INTEGRAL gamma-ray burst (GRB) 080603A, beginning at trest= 37 s after the onset of the GRB. This optical flash appears to be distinct from the subsequent emerging afterglow emission, for which we present comprehensive broad-band radio to X-ray light curves to 13 d post-burst and rigorously test the standard fireball model. The intrinsic extinction towards GRB 080603A is high (AV, z= 0.8 mag), and the well-sampled X-ray-to-near-infrared spectral energy distribution is interesting in requiring an LMC2 extinction profile, in contrast to the majority of GRBs. Comparison of the γ-ray and extinction-corrected optical flux densities of the flash rules out an inverse-Compton origin for the prompt γ-rays; instead, we suggest that the optical flash could originate from the inhomogeneity of the relativistic flow. In this scenario, a large velocity irregularity in the flow produces the prompt γ-rays, followed by a milder internal shock at a larger radius that would cause the optical flash. Flat γ-ray spectra, roughly F∝ν−0.1, are observed in many GRBs. If the flat spectrum extends down to the optical band in GRB 080603A, the optical flare could be explained as the low-energy tail of the γ-ray emission. If this is indeed the case, it provides an important clue to understanding the nature of the emission process in the prompt phase of GRBs and highlights the importance of deep (R > 20 mag), rapid follow-up observations capable of detecting faint, prompt optical emission.

History

Citation

Monthly Notices of the Royal Astronomical Society , 2011, 417 (3), pp. 2124-2143

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP)

issn

0035-8711

Copyright date

2011

Available date

2012-10-24

Publisher version

http://mnras.oxfordjournals.org/content/417/3/2124

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC