University of Leicester
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Adaptive Augmenting Control Design for Time-Varying Polytopic Systems

journal contribution
posted on 2016-11-16, 11:52 authored by Hessam Mahdianfar, Emmanuel Prempain
To increase the performance of closed-loop controlled systems in off-nominal conditions and in the presence of inevitable faults and uncertainties, a systematic approach based on robust convex optimization for adaptive augmenting control design is discussed in this paper. More specifically, this paper addresses the problem of adaptive augmenting controller (AAC) design for systems with time-varying polytopic uncertainty. First, a robust state-feedback controller is designed via robust convex optimization as a baseline controller. The closed-loop polytopic system with the baseline controller is considered as the desired time-varying reference model for the design of a direct state-feedback adaptive controller. Next using Lyapunov arguments, global stability of combined robust baseline and adaptive augmenting controllers is established. Furthermore, it is proved that tracking error converges to zero asymptotically. A case study for a generic nonminimum phase nonlinear pitch-axis missile autopilot is conducted. Simulation tests are performed to evaluate stability and performance of nonlinear time-varying closed-loop system in the presence of uncertainties in pitching moment and normal force coefficients, and unmodeled time delays. In addition, results of the simulations indicate satisfactory robustness in case of severe loss of control effectiveness event.

Funding

The authors are grateful to MBDA UK for the financial support.

History

Citation

Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 139(1), 011005 (Sep 22, 2016) (6 pages)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering

Version

  • AM (Accepted Manuscript)

Published in

Journal of Dynamic Systems

Publisher

American Society of Mechanical Engineers (ASME)

issn

0022-0434

eissn

1528-9028

Acceptance date

2016-08-03

Copyright date

2017

Publisher version

http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=2545300

Notes

No permission to make PDF available.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC