posted on 2007-05-01, 13:06authored byKim Holloway, Victoria E. Lawson, Alec J. Jeffreys
Meiotic recombination is of fundamental importance in creating haplotype diversity in
the human genome and has the potential to cause genomic rearrangements by ectopic
recombination between repeat sequences and through other changes triggered by
recombination-initiating events. However, the relationship between allelic recombination and genome instability in the human germline remains unclear. We have therefore analysed recombination and DNA instability in the δ-, β-globin gene region and its associated recombination hotspot. Sperm typing has for the first time accurately defined the hotspot and shown it to be the most active autosomal crossover hotspot yet described, although unusually inactive in non-exchange gene conversion. The hotspot just extends into a homology block shared by the δ- and β-globin genes, within which ectopic exchanges can generate Hb Lepore deletions. We developed a physical selection method for recovering and validating extremely rare de novo deletions in human DNA and used it to characterise the dynamics of these Hb Lepore deletions in sperm as well as other deletions not arising from ectopic exchanges between homologous DNA sequences. Surprisingly, both classes of deletion showed breakpoints that avoided the β-globin hotspot, establishing that it possesses remarkable fidelity and does not play a significant role in triggering these DNA rearrangements. This study also provides the first direct analysis of de novo deletion in the human germline and points to a possible deletion controlling element in the β-globin gene separate from the crossover hotspot.
History
Citation
Human Molecular Genetics, 2006, 15, pp.1099-1111
Published in
Human Molecular Genetics
Publisher
Oxford University Press
Available date
2007-05-01
Notes
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Human Molecular Genetics following peer review. The definitive publisher-authenticated version [Human Molecular Genetics, 2006, 15, pp.1099-1111] is available online at: http://hmg.oxfordjournals.org/cgi/content/abstract/15/7/1099