posted on 2024-09-05, 15:07authored byI de Pater, E Lellouch, DF Strobel, K de Kleer, T Fouchet, MH Wong, BJ Holler, J Stansberry, PM Fry, ME Brown, D Bockelée-Morvan, SK Trumbo, Leigh FletcherLeigh Fletcher, MM Hedman, EM Molter, M Showalter, MS Tiscareno, S Cazaux, R Hueso, S Luszcz-Cook, H Melin, C Moeckel, A Mura, G Orton, L Roth, J Saur, F Tosi
We observed Io with the James Webb Space Telescope (JWST) while the satellite was in eclipse, and detected thermal emission from several volcanoes. The data were taken as part of our JWST-ERS program #1373 on 15 November 2022. Kanehekili Fluctus was exceptionally bright, and Loki Patera had most likely entered a new brightening phase. Spectra were taken with NIRSpec/IFU at a resolving power R ≈ 2,700 between 1.65 and 5.3 µm. The spectra were matched by a combination of blackbody curves that showed that the highest temperature, ∼1,200 K, for Kanehekili Fluctus originated from an area ∼0.25 km2 in size, and for Loki Patera this high temperature was confined to an area of ∼0.06 km2. Lower temperatures, down to 300 K, cover areas of ∼2,000 km2 for Kanehekili Fluctus, and ∼5,000 km2 for Loki Patera. We further detected the a1Δ ⇒ X3Σ− 1.707 µm rovibronic forbidden SO emission band complex over the southern hemisphere, which peaked at the location of Kanehekili Fluctus. This is the first time this emission has been seen above an active volcano, and suggests that the origin of such emissions is ejection of SO molecules directly from the vent in an excited state, after having been equilibrated at temperatures of ∼1,500 K below the surface, as was previously hypothesized.
Funding
NASA/STSci. Grant Numbers: JWST-ERS-1373, GO-15425.002-A
ANR. Grant Number: ANR-21-CE49-0020-01
ERC. Grant Number: 723890
NASA. Grant Numbers: 80NM0018D0004, NAS 5-03127, NAS 5-26555
MCIN/AEI. Grant Number: PID2019-109467GB-I00
History
Author affiliation
College of Science & Engineering
Physics & Astronomy