University of Leicester
07445895.pdf (601.08 kB)
Download file

An Equivalence Principle for OFDM-Based Combined Bulk/Per-Subcarrier Relay Selection over Equally Spatially Correlated Channels

Download (601.08 kB)
journal contribution
posted on 2018-06-04, 11:25 authored by Shuping Dang, Justin P. Coon, Gaojie Chen
In this paper, we propose a novel relay selection scheme for orthogonal frequency-division multiplexing systems by combining conventional bulk and per-subcarrier selection schemes and analyze its outage performance over equally spatially correlated channels. Specifically, the combined selection scheme selects only two relays at the first attempt and performs per-subcarrier selection over these two relays. We analyze the asymptotic outage performance of the combined selection scheme in the high signal-to-noise ratio (SNR) region and prove a generalized theorem. This theorem states that the combined selection can achieve an optimal outage probability equivalent to the per-subcarrier selection at a high SNR without using the full set of available relays for selection. This unique property is termed the equivalence principle, and it holds for all correlation conditions. To explore this principle, we consider three examples: decode-and-forward, fixed-gain amplify-and-forward (AF), and variable-gain AF relay systems. Furthermore, two extended applications, i.e., antenna selection and branch selection, are also considered to reveal the feasibility and the expandability of the equivalence principle. Our analysis is verified by Monte Carlo simulations. The proposed combined selection and the proved theorem provide a general and feasible solution to the tradeoff between system complexity and outage performance when relay selection is applied.


This work was supported in part by the FP7 DIWINE project under Grant Agreement CNET-ICT-318177 and in part by the China Scholarship Council under Grant 201508060323.



IEEE Transactions on Vehicular Technology, 2017, 66(1), pp. 122-133

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering


  • AM (Accepted Manuscript)

Published in

IEEE Transactions on Vehicular Technology


Institute of Electrical and Electronics Engineers (IEEE)





Acceptance date


Copyright date


Available date


Publisher version