conv_diff_apost4_mm_V2 .pdf (350.3 kB)
Download fileAn a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems
journal contribution
posted on 2020-11-26, 16:27 authored by Emmanuil H Georgoulis, Edward Hall, Charalambos MakridakisAn a posteriori bound for the error measured in the discontinuous energy norm for a discontinuous Galerkin (dG) discretization of a linear one-dimensional stationary convection-diffusion-reaction problem with essential boundary conditions is presented. The proof is based on a conforming recovery operator inspired from a posteriori error bounds for the dG method for first-order hyperbolic problems. As such, the bound remains valid in the singular limit of vanishing diffusion. Detailed numerical experiments demonstrate the independence of the quality of the a posteriori bound with respect to the Péclet number in the standard dG-energy norm, as well as with respect to the viscosity parameter.
History
Citation
IMA Journal of Numerical Analysis, Volume 39, Issue 1, January 2019, Pages 34–60, https://doi.org/10.1093/imanum/drx065Author affiliation
School of Mathematics & Actuarial ScienceVersion
- AM (Accepted Manuscript)