University of Leicester
Browse
- No file added yet -

An alternative surgical approach reduces variability following filament induction of experimental stroke in mice

Download (887.91 kB)
journal contribution
posted on 2018-02-08, 11:15 authored by Melissa Trotman-Lucas, Michael E. Kelly, Justyna Janus, Robert Fern, Claire L. Gibson
Animal models are essential for understanding the pathology of stroke and investigating potential treatments. However, in vivo stroke models are associated, particularly in mice, with high variability in lesion volume. We investigated whether a surgical refinement where reperfusion is not reliant on the Circle of Willis reduced outcome variability. Mice underwent 60 min of transient middle cerebral artery occlusion avoiding ligation of the external carotid artery. During reperfusion, the common carotid artery was either ligated (standard approach), or it was repaired to allow re-establishment of blood flow through the common carotid artery. All mice underwent MRI scanning for assessment of infarct volume, apparent diffusion coefficient and fractional anisotropy, along with terminal assessment of infarct volume by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Repairing the common carotid artery following middle cerebral artery occlusion enhanced reperfusion (P<0.01) and reduced the variability seen in both total (histological analysis, P=0.008; T2-weighted MRI, P=0.015) and core (diffusion tensor MRI, P=0.043) lesion volume. Avoiding external carotid artery ligation may improve animal wellbeing, through reduced weight loss, while using an alternative surgical approach that enabled reperfusion through the common carotid artery decreased the variability in lesion volume seen within groups.

History

Citation

Disease Models & Mechanisms, 2017, 10 (7), pp. 931-938

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Neuroscience, Psychology and Behaviour

Version

  • VoR (Version of Record)

Published in

Disease Models & Mechanisms

Publisher

Company of Biologists

issn

1754-8403

eissn

1754-8411

Acceptance date

2017-05-24

Copyright date

2017

Available date

2018-02-08

Publisher version

http://dmm.biologists.org/content/10/7/931

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC