University of Leicester
Browse
- No file added yet -

Applications of Quaternionic Holomorphic Geometry to minimal surfaces

Download (1.33 MB)
journal contribution
posted on 2017-05-12, 15:29 authored by K. Leschke, K. Moriya
In this paper we give a survey of methods of Quaternionic Holomorphic Geometry and of applications of the theory to minimal surfaces. We discuss recent developments in minimal surface theory using integrable systems. In particular, we give the Lopez–Ros deformation and the simple factor dressing in terms of the Gauss map and the Hopf differential of the minimal surface. We illustrate the results for well–known examples of minimal surfaces, namely the Riemann minimal surfaces and the Costa surface.

Funding

Both authors supported by JSPS KAKENHI Grant-in-Aids for Scientific Research (C), Grant Number 25400063.

History

Citation

Complex Manifolds, 2016, 3 (1)

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics

Version

  • VoR (Version of Record)

Published in

Complex Manifolds

Publisher

De Gruyter Open

eissn

2300-7443

Acceptance date

2016-10-13

Copyright date

2016

Available date

2017-05-12

Publisher version

https://www.degruyter.com/view/j/coma.2016.3.issue-1/coma-2016-0015/coma-2016-0015.xml

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC