
Assessing Profit of Prediction for SDN Controllers Load

Balancing

Hong Zhong1, Jinpeng Fan1, Jie Cui1, Yan Xu1, Lu Liu2

Abstract

Software-defined networking (SDN) provides programmable control and cen-
tralized management in data centers, making it a popular architecture. The
large scale of networks has required to propose the geographical distribu-
tion of logically centralized control plane to achieve scalability and reliabil-
ity. For solving the load imbalance among multiple controllers associated
with the statically configured control plane, a switch migration mechanism
is proposed to admit dynamic load balancing. Many studies have been car-
ried out for solving the control plane load balancing problem based on the
switch migration mechanism. However, previous studies focus on migrating
the switches when the controllers are overloaded, thereby, wasting time in
the switch migration phase and resulting in high latency. To address these
problems, we propose the Assessing Profit Of Prediction (APOP) scheme,
a load-balancing strategy in the multiple-controllers control plane based on
the overloaded state prediction and profit assessment. We introduce Taylor’s
formula to predict the flow change in the network and assess the profit of
migrating switches in advance, in order to decrease the migration time and
minimize the harmful effects during the migration phase. The result of sim-
ulation experiments shows that our scheme performs effectively in reducing

Email addresses: cuijie@mail.ustc.edu.cn (Jie Cui), l.liu@leicester.ac.uk
(Lu Liu)

1H. Zhong, J. Fan, J. Cui and Y. Xu are with the Key Laboratory of Intelligent Com-
puting and Signal Processing of Ministry of Education, School of Computer Science and
Technology, Anhui University, Hefei 230039, China, the Anhui Engineering Laboratory
of IoT Security Technologies, Anhui University, Hefei 230039, China, and the Institute
of Physical Science and Information Technology, Anhui University, Hefei 230039, China
(e-mail: cuijie@mail.ustc.edu.cn).

2L. Liu is with the School of Informatics, University of Leicester, LE1 7RH, UK (email:
l.liu@leicester.ac.uk).

Preprint submitted to Elsevier January 11, 2021



the migration cost in control plane load balancing.

Keywords: Software-defined networking, control plane load balancing,
switch migration, Taylor’s formula, profit assessment

1. INTRODUCTION

With the growing pressure of management due to the increasing number
of network elements in the traditional networks, a new networking structure
called software-defined network (SDN) was proposed and has been grow-
ing over the past few years. The intelligence of SDN decouples the control
plane from the data plane, which provides a logically centralized management
mechanism to replace the distributed functions on the specific hardware [1].
As the brain of the network, the controller provides the northbound to access
the programmability directing switches in the data plane to accomplish the
forwarding tasks by southbound, the OpenFlow protocol [2]. The efficiency
of SDN, which consisted of three levels, enables global sight of networks and
overall management. With the continuous extension of networking scale,
admittance of scalability and reliability of the centralized control plane be-
comes a key issue in SDN. An effective approach to solve the problem is
by deploying distributed controllers, with each controller managing a set of
switches and corresponding each other to access a global network monitoring
and centralized control capacity [3]. The structure of the distributed SDN
network is shown in Figure 1. However, deployment of the static controller-
switch mapping results in load imbalance in distributed controllers. In case
of multiple controllers, the load imbalance could harmfully affect the per-
formance of the control plane. When the flow peak occurs, because of the
controller placement problem, the traffic flow is distributed unevenly in the
data plane; therefore, the OpenFlow requests generated in switches are un-
even as well. Some controllers may handle several requests, crossing their
bottleneck, thus resulting in high latency and high loss rate of packets, while
others may handle less-than-required number of requests, wasting the energy
utilization. Therefore, a dynamic switch migration mechanism among multi-
ple controllers becomes an urgent demand that aims to balance the load and
ensure the stability of the network when the flow peak occurs [4].

In the distributed control plane, due to the dynamic traffic, the flow
requests generated by each switch vary with time, which easily causes the
load of each controller to change over time as well. Usually, the following

2



Figure 1: The Structure of Distributed SDN Network

three cases result in introduction of switch migration to handle the load in
the control plane. First, if the aggregated traffic load goes beyond the sum
capacity of all the controllers, new controllers would be added in and switch
migration occurs to update the network topology [4], [5]. Second, controllers
may crash down accidentally because of the single point of failure (SPOF), or
to achieve green IT [6] and energy efficiency [7], [8], controllers may shut down
forwardly for saving communication cost and power; therefore, switches have
to be migrated to the controllers that are still working to keep the normal
operation of the network. Third, when the load of some controllers exceeds
their maximum capacity and could not maintain their stable operating states,
if there exist other controllers with low load, switches should be migrated to
ensure load balancing.

Many studies introduce the switch migration mechanism to achieve load
balancing among multiple controllers in the control plane. The OpenFlow
protocol v.1.3 [9] allows each OpenFlow switch to connect to several con-
trollers, with each controller having three patterns on the switch: master,
equal, and slave. However, each switch could only have one master con-
troller, which has full authority to access it. Hence, the concept of switch
migration is to change the role of controller to that of the switch. In the
beginning, most studies attempt to find out how to decide the threshold to
trigger migration. Others pay more attention to map controller-switch pairs
to ensure global stability. However, all of them prefer to trigger migration
when controllers are overloaded, a few consider the transfer cost during mi-

3



gration, and no one relates to predicting controllers facing the risk of overload
and migrating switches in advance.

When migration occurs, a controller has to stop accepting PACKET IN
messages from the migrated switch; therefore, it also stops issuing response
messages such as FLOW MOD or PACKET OUT to guide packets forward-
ing in the data plane. In other words, network latency or even packet loss
would happen during the migration. To summarize, migration time is a
key issue affecting the network’s performance. A switch’s migration time
varies with the status of its connected controller, i.e., it increases with the
controller’s load, which is gauged by the controller’s CPU usage [10]. The
communication between controllers and switches during a migration process
is as follows: First, the overloaded controllers send ACK request messages
to other controllers for finding out unloaded controllers, and then the other
controllers, in turn, send back ACK reply messages. This step consumes the
CPU resource of the controllers. Second, the overloaded controllers select the
switches to be migrated and send role transfer messages to switches, which
consume the CPU and bandwidth resources simultaneously. Finally, switches
transfer their master controllers and finish the migration. The communica-
tion details during the migration phase are shown in Figure 2. With the
increasing of the controller’s CPU usage, the switch migration time would
increase with the response time of the controller. On the basis of this, we
propose the Assessing Profit of Prediction (APOP) scheme, which aims to
migrate the switch before the controller is overloaded to save migration cost
during the load balancing. In the APOP scheme, we focus on the following
three objectives:

• Shift the controller’s load in advance to prevent packet loss and to
reduce the migration cost during the load balancing.

• Minimize the network fluctuation during the migration process.

• Ensure the balance rate in the control plane after the load balancing.

To achieve the aforementioned objectives, our main contributions com-
pared to related works are as follows:

• We design a prediction mechanism to select the controller that is going
to be overloaded in advance.

4



Figure 2: Communication Details in the Migration Phase

5



• We assess the profit for selecting the controller, which could bring the
best networking performance after migration.

• We analyze the switch’s state to prevent harmful effects to the network
stability, and to bring better balance rate in the control plane.

The rest of the paper is organized as follows. Section 2 provides an
overview of related works. Section 3 gives our formulation of the load bal-
ancing problem. Section 4 proposes the APOP scheme, with the design and
implementation of the algorithm. Section 5 presents the experiment’s evalu-
ation of the scheme and discussion of the performance. Section 6 concludes
the paper.

2. RELATED WORKS

The traditional SDN implementation relies on a single controller to pro-
vide centralized control and management in networks, such as NOX [11].
However, with rapid development in cloud computing, massive data become
handling in data centers. Explosive requests generated in the data plane
crashes in the control plane for directing forwarding rules [12]. As the result,
setting up only one single controller faces the limitation of scalability and re-
liability in the control plane. Some previous studies proposed kinds of SDN
architectures with distributed controllers such as [3], [13], [14]. They suppose
to leverage multiple controllers to share requests management for reducing
the computation pressure on a single controller. With multiple distributed
controllers, the strategies like Beacon [15] and Kandoo [16] focus on improv-
ing the performance of each controller to enhance the global performance of
the control plane.

Leveraging the geographical distribution control plane consisted of mul-
tiple controllers can effectively improve the performance of SDN networks.
However, the implementation with multiple controllers brings a difficulty
that the controller-switch mapping is statically configured, making it hard
to adapt the varying of requests in the data plane; therefore, how to dy-
namically balance the load distribution among multiple controllers becomes
a new challenge. The role transfer mechanism has been supported in Open-
Flow v.1.3 [9], which implies that an SDN controller has three roles to a
switch: master, slave, and equal. The controller with master or equal state
has full access to the switch, while the slave controller could not manage

6



the switch. A controller may change its role to transfer its management au-
thority of switches. Meanwhile, the mechanism which allows dynamic switch
migration can be an effective approach to balance the load in the control
plane.

On the basis of the switch migration mechanism, many studies propose
dynamic load balancing strategies to access the scalability and reliability in
the distributed control plane. Dixit et al. [4] firstly propose the ElastiCon,
an efficient protocol to enable switch migration among multiple controllers.
In their scheme, overloaded controller shifts its load to the nearest-neighbor
controller. Zhou et al. [17] propose the DALB algorithm. They select the
most overloaded controller by comparing the load with an adaptive thresh-
old, and then migrate the heaviest-loaded switch to a low-loaded controller.
However, these studies only consider how to deal with overloaded controllers,
but not ensure the stability of the distributed control plane, which may lead
to load imbalance again after one turn of load balancing, and may frequently
trigger switch migration execution. Cheng et al. [18] propose the DHA
strategy, which defines the load balancing problem among controllers as the
Switch Migration Problem (SMP). They design a distributed algorithm that
could run on every controller independently, to maximize the global system
utilization. Cimorelli et al. [19] introduce game theory and propose a dis-
tributed algorithm, which grants the authorities of migrating decision to the
switches to choose fitful controllers without communicating between each
other. They suggest that controllers have no necessary to determine which
switch to be selected to migrate, so that part of pressure in the control plane
could be shifted into the data plane. In [20], Yu et al. propose the load in-
forming strategy, that controllers periodically report their load information
to others for detecting the overloaded controllers. These studies give kinds
of distributed algorithms to access the scalability of the control plane which
consisted of multiple controllers. However, they do not consider about the
transfer cost during the switch migration phase.

Migration cost is an important issue who affects the network’s perfor-
mance, so it could not be negligible in the load balancing problem. Actually,
in the early work ElastiCon [4], they have considered to select the nearest-
neighbor controller to shift load for saving migration time. However, it is
not the key point in this study. In [21], Liang et al. propose a mechanism to
cluster controllers before shifting the load. They attempt to save the turns
during the migration to reduce the network’s fluctuation. However, their
strategy increases the response time because of the clustering step. Wang et

7



al. [22] propose the SMDM, which considers the distance from the migrated
switch to the new master controller as a key issue who affects migration
cost. On the basis of this knowledge, they define the migration efficiency,
which makes a trade-off between migration cost and the load balance rate.
To access less time for searching in the imbalance detection, Chen et al. [10]
propose the FCLB, which uses the genetic algorithm to achieve fast conver-
gence in the imbalance detecting phase. In [23], Zhou et al. formulate the
switch migration as a 3-D earth mover’s distance model to protect the strate-
gically important controllers in the network, which could prevent saturation
attacks. However, all of the above schemes trigger the switch migration when
controllers cross their bottleneck, which may take a long migration time dur-
ing the load balancing.

3. PROBLEM FORMULATION

In an SDN network, once a switch receives a packet, it would check its
flow table for matching the forwarding rule. If the packet first arrives and
there is no flow entry to match, the switch would encapsulate the packet
into a PACKET IN message and would send it to its master controller, after
that, the master controller computes the forwarding rule and install a new
flow entry in the switch by sending a FLOW MOD message. The procedure
is illustrated in Figure 3. Generally, in all types of the message processing
in a controller, the PACKET IN message processing is regarded as the most
significant load [24]. Thus, load imbalance among multiple controllers occurs
mainly because of the enormous variety of PACKET IN messages in the
distributed control plane.

In the distributed control plane, each controller manages a set of switches.
The requests from the switches would be aggregated at the processing queue
of the connected controllers. With the increasing number of requests, the
controller’s CPU usage increases, and the response time increases as well.
Besides, the response time increases as a non-linear trend with the controller’s
CPU usage. As shown in the Figure 4, the response time increases more
rapidly when the controller’s CPU usage approaches its bottleneck. However,
when the number of requests crosses the controller’s processing capacity,
packet loss would happen and it harmfully affects the performance of the
network.

In this paper, we define a distributed SDN network G consisted of N
controllers and M switches, which denoted as C = {c1, c2, ..., cN} and S =

8



Figure 3: The Procedure of the New Flow Arrival in the SDN Network

0 10 20 30 40 50 60 70 80 90 100
Controller's CPU usage (in %)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Co
nt

ro
lle

r's
 re

sp
on

se
 ti

m
e 

(in
 m

se
c)

Figure 4: The Controller’s Response Time Increasing with the CPU Usage

9



Table 1: List of Notations
Notation Description
si ith switch
cj jth controller
αj Processing capacity of the jth controller
lit Switch ith load at time t

Lj
t Controller jth load at time t

xij Whether ith switch’s master controller is jth

controller
λ1 Low-loaded state ratio between migration

time and controller’s load
λ2 Heavy-loaded state ratio between migration

time and controller’s load
Pj Profit for saved migration time of the jth con-

troller
ω Interval of the time slot
ξt+ω Total load difference of the control plane after

load balancing

{s1, s2, ..., sM}, respectively. Each controller’s processing capacity in terms
of the number of packets that it can handle per second is denoted as α =
{α1, α2, ..., αN}. The rest of the used notations of this paper are summarized
in Table 1.

We denote the ith switch’s load in terms of the new requests it receives at
time slot t as lit, which means that it has to send such number of PACKET IN
messages to its master controller. That is to say, the jth controller’s load in
terms of the PACKET IN messages it receives from its managed switches at
time slot t could be denoted as Lj

t , which is given in Equation 1.

Lj
t =

M∑
i=1

lit ∗ xij (1)

Because the proposed scheme aims to migrate the switches in advance
to reduce the migration cost during the load balancing, the focus of the
controller’s load should be pointed at the next time slot t+ω. We temporar-
ily define the prediction method as fprediction, so the load of ith switch and
jth controller at the next time slot could be denoted as Equation 2 and 3,

10



respectively.

lit+ω = fprediction(lit) (2)

Lj
t+ω = fprediction(Lj

t) (3)

3.1. Profit Definition

Two conditions would trigger the migration for load balancing. (1) When
the predicted load of the controller crosses its processing capacity, which
means that the packet loss would happen at the next time slot. In this
condition, switch migration has to be executed immediately to prevent the
packet loss in the future, which denoted as Equation 4.

Lj
t+ω > αj (4)

(2) When the predicted load of the controller under its processing ca-
pacity, however, executes the switch migration can bring great profit, which
is presented as saving a lot of migration time. As shown in Figure 5, the
migration time increases as a non-linear curve with the controller’s response
time, which is subject to the CPU usage. We set λ1 and λ2, which denote
the ratio between migration time and controller’s load, to discriminate the
low-loaded state and heavy-loaded state of the controller. On the basis of
this, the profit Pj could be defined as Equation 5.

Pj = Lj
t+ω ∗ λ2 − L

j
t ∗ λ1 (5)

3.2. Load Differences Definition

After migration, we define the load of controller j as Lj
new, and have to

measure the difference of each controller’s load. Because the proposed scheme
does not add or shutdown the controller during the migration phase, so the
set of controllers C would not be changed and it is construct of N controllers.
We define the average load of all controllers as Equation 6.

Avg =

∑N
j=1 L

j
new

N
(6)

Each controller’s load difference is defined as Equation 7.

dj = |Lj
new − Avg| (7)

11



0 10 20 30 40 50 60 70 80 90 100
Controller's CPU usage (in %)

0

25

50

75

100

125

150
Sw

itc
h'
s m

ig
ra
tio

n 
tim

e 
(in

 m
se
c)

Figure 5: The Switch Migration Time Increasing with the Usage of its Master Controller’s
CPU

Then, the metric of the total load difference among all controllers after
load balancing can be defined as Equation 8.

ξt+ω =

∑N
j=1 dj

N
(8)

3.3. Optimization Problem

To conclude the problem formulation, the goal is to find the best migra-
tion policy which can minimize the total load difference ξt+ω after the load
balancing in the data plane. Therefore, the optimization problem can be
formulated as follows.

Minimize ξt+ω (9)

subject to:

xij = 1 (10)

Lj
t+ω < αj (11)

Pj − Lj
t ∗ λ1 > 0 (12)

12



Equation 10 ensures that the migrated switches are selected from the
original master controller who has to be shifted load. As we expounded
before, once the predicted load of a controller crosses its capacity, its switch
has to be migrated immediately to prevent packet loss. This condition should
not be included in the optimization problem; therefore, Equation 11 ensures
that the proposed scheme only focuses on the controllers whose predicted
load does not cross their capacities.

Equation 12 explains the guarantee of that the profit of shifting a con-
troller overs the loss of ignoring a migration opportunity (if we ignore the
prediction, the migration time at the low-loaded timing is going to be a loss).
The profit Pj, which is denoted as the D-value between the prediction of the
controller’s load and the original load before the prediction, describes that
how much time could be saved because of the prediction. On the contrary,
the lost time during the load balancing is the time spent for migrating the
switch at the time t. Therefore, the proposed scheme can ensure the profit
of prediction overs the loss of migrating in advance.

4. ASSESSING PROFIT OF PREDICTION SCHEME

In this section, we describe our framework of the Assessing Profit Of Pre-
diction (APOP) scheme, which is illustrated in Figure 6. It is constructed
based on SDN structure, which aims to dynamically balance the load distri-
bution among multiple controllers with the help of switch migration mech-
anism. In the control plane, it mainly consists of three modules: Monitor
module, Load balancing trigger module, and Migration execution module.

4.1. Monitor Module

The monitor module is set up for periodically collecting the statistic data,
which is mainly the number of PACKET IN messages from the controller’s
managed switches in each time slot. It stores the data in the database, and
provides the historical information to the load balancing trigger module for
analyzing whether to trigger switch migration.

4.2. Load Balancing Trigger Module

4.2.1. Prediction function

The function approximation is widely used in the prediction works. We
choose the Taylor’s formula, which is provided to describe the information
in the vicinity of one point in a curve, for the prediction phase. Compared

13



Figure 6: The Framework of the APOP Scheme

with the prediction methods based on machine learning or other long-term
prediction methods, the Taylor’s formula has such advantages as follows:
(1) The Taylor’s formula can straightly function on the generating curve,
which consists of historical data, without any training phases; therefore, the
mechanism does not depend on the dataset to train the model for predic-
tion. (2) Because the proposed scheme does not care about the trend of
the curve in the future, the focus is on the state of the next time slot for
selecting the controllers facing overloaded. We have no need to predict a
long-term trend, and the finitely spread Taylor’s formula can perform a won-
derful computational complexity. The conventional expression is given as

f(x) =
∞∑
k=1

f (k)(x0)

k!
(x−x0)k. The proposed scheme implements the Taylor’s

formula as the function fprediction to predict the number of PACKET IN mes-
sages at time slot t + ω with the states in t, t − ω, t − 2ω... We present the
function in Equation 13.

14



lit+ω =
(lit)

0!
+

(lit)
′

1!
(t+ ω − t)

+
(lit)
′′

2!
(t+ ω − t)2 + ...

+
(lit)

(n)

n!
(t+ ω − t)n

+
1

n− 1

n−1∑
k=1

(fprediction(lit−kω)− lit−kω)

(13)

At the end of Equation 13, we implement
1

n− 1

n−1∑
k=1

(f(xk)−xk) to correct

the errors with the historical prediction. Considered to decrease the compu-
tational complexity, we do not spread the function infinitely. However, the
one-step prediction would still perform accurately because of the continu-
ous rising requests. The prediction algorithm’s pseudo code is presented in
Algorithm 1.

4.2.2. Profit assessment

We have three targets to achieve in this phase: (1) Select the controller
who needs to be shifted load; (2) Select the new master controller to receive
the shifted load, i.e., the migrated switch; (3) Select the switches who can
minimize the loss during the migration. As we expounded before, there are
two conditions to select a controller to shift load for load balancing: (1) Once
the prediction Lj

t+ω > αj, the controller has to shift load immediately; (2) If

the prediction Lj
t+ω whose response time crosses the threshold between λ1 and

λ2, the controller has to be assessed whether the profit is over the migration
time that before it crosses the threshold, which is given in Equation 12.

To discriminate the state of the controller’s load between the low-loaded
and the heavy-loaded, the proposed scheme has to determine a large differ-
ence between the value of λ1 and λ2. According to Figure 5, we locate the
breakpoint in the curve, and calculate the slopes from the start point to the
breakpoint and from the breakpoint to the end point. We set the slope of
the smooth segment as the λ1 and the slope of the abrupt segment as the λ2.

After determining the controller cj who needs to be shifted load, the
new master controller for receiving shifted switch would be selected from
the low-loaded controllers and it should achieve Equation 14. Then the

15



Algorithm 1 Prediction Method

Input: lit, l
i
t−ω, lit−2ω, lit−3ω, lit−4ω

Output: lit+ω

1: Initialize:
2: d1: The first derivative.
3: d2: The second derivative.
4: Correct: The correction of the function.
5: lit+ω: The load prediction of ith switch.
6:

7: d1 =
lit−lit−ω

ω

8: d2 =
d1−(lit−ω−lit−2ω)/ω

ω2

9: lit+ω = lit + d1
1!
ω + d2

2!
ω2

10: for k = 2; k < 4; k + + do
11: d1 = d2

12: d2 =
d1−(lit−kω−l

i
t−(k+1)ω

)/ω

ω2

13: Correct = Correct+ lit−(k−1)ω + d1
1!
ω + d2

2!
ω2 − lit−(k−2)ω

14: end for
15: lit+ω = lit+ω + Correct
16: return lit+ω

16



proposed scheme greedily selects the switches who can ensure minimum loss,
for minimizing the difference δ between the load of the previous controller
and the new controller as shown in Equation 15. Every selected switch has
to satisfy Equation 16 in each iteration. The complete profit assessment
algorithm’s pseudo code is given in Algorithm 2.

min{Lj
t+ω − L

j
t} (14)

δ = |(Lpre
t − l

migrated
t )− (Lnew

t + lmigrated
t )| (15)

min{lit+ω − lit} (16)

4.3. Migration Execution Module

The migration execution module is in charge of executing the migration
decision made from Algorithm 2. Once the controller who needs to shift
load cj, smigrated and cnew are determined, the controller cj would send a
ROLE TRANSFER message to the switch smigrated. Then the switch smigrated

communicate with its previous master controller cj and its new master con-
troller cnew. The task of role transfer would re-map the controller-switch
mapping and the network G would be updated.

5. PERFORMANCE EVALUATION

In this section, we perform our experiments and compare our scheme with
our previous work. We implement our scheme in a simulated environment,
which is constructed in Ubuntu 16.04 LTS, with the hardware of 4 cores
CPU and 8GB memory. We use the Floodlight controller [25] to establish
5 controllers. The topology we use is BT Asia-Pacific Topology from the
Topology Zoo [26], and we run it in the Mininet platform [27]. To measure the
processing capacity of the controller, we use the SDN controller benchmark
CBench [28] to imitate the BT Asia-Pacific Topology, i.e., 20 nodes. As
shown in Figure 7, the processing capacity of the controller is around 40000
packets per second, and it catches its bottleneck with the CPU usage arrived
100 percent.

To test the performance, we singly simulate our scheme to observe the
effect on multiple-controllers load balancing. As shown in Figure 8, we use
iPerf [29] to generate OpenFLow requests into the controller c1, c2 and c5.

17



Algorithm 2 Profit Assessment
Input: cj
Output: cnew, smigrated[]

1: Initialize:
2: cnew: The controller to receive the shifted load.
3: smigrated[]: The set of switches to be migrated.
4: δ: The difference between previous controller and new controller.

Phase 1:

1: if Lj
t+ω > αj then

2: Go to Phase 2
3: end if
4: if Pj − Lj

t ∗ λ1 > 0 then
5: Go to Phase 2
6: end if
7: return null

Phase 2:

1: for ck in C && k != j do
2: if ck in the low-loaded state && min{Lk

t+ω − Lk
t } then

3: cnew = ck
4: δ = Lj

t − Lnew
t

5: end if
6: end for
7: for xij = 1 do
8: if min{lit+ω − lit} && |(Lj

t − lit)− (Lnew
t + lit)| < δ then

9: Add si to smigrated[]
10: Delete si from S
11: δ = |(Lj

t − lit)− (Lnew
t + lit)|

12: Lj
t = Lj

t − lit
13: Lnew

t = Lnew
t + lit

14: end if
15: end for
16: return smigrated[], cnew

18



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Test loop (in times)

0

10000

20000

30000

40000

50000

Co
nt

ro
lle

r's
 p

ro
ce

ss
in

g 
ca

pa
cit

y 
(in

 p
ac

ke
ts

/s
ec

)

Figure 7: The Processing Capacity of the Controller when it Catches its Bottleneck

The packet arrival crosses the bottleneck of the controller c1 and c2 at about
150th second, while the load of c5 increases for a while but not catch its
bottleneck. When the APOP algorithm runs, as shown in Figure 9, the over-
loaded controllers successfully shift load before they catch their bottleneck.
Because of the bad profit assessment of c5, the controller denies shifting its
load during the load balancing. We set the time slot ω as 1 second, which is
fine-granted enough for the overload detection in the network.

We introduce the load balancing ratio [30] to evaluate the load distribu-
tion after the switch migration. The ratio is denoted as Equation 17, and
the performance is illustrated in Figure 10. Because of the switch selection
mechanism in the APOP, great load balancing ratio is achieved after the load
balancing.

ratio =
avg(Loadcj)

1
N

∑N
k=1 Loadck

(17)

To intuitively express the performance of our scheme, we compare our
strategy with ELASTICON [4] and SMCLBRT [30]. In the ELASTICON,
Dixit et al. firstly use switch migration mechanism with OpenFlow v.1.3
to balance load among multiple controllers. They trigger load balancing
with a stated threshold and migrate the switch to the nearest neighbor-

19



50 100 150 200 250 300 350
Time (in sec)

0

10000

20000

30000

40000

50000
Co

nt
ro

lle
r's

 lo
ad

 (i
n 

pa
ck

et
)

C1
C2
C3
C4
C5

Figure 8: The Controllers Load Distribution without any Load Balancing Mechanism

50 100 150 200 250 300 350
Time (in sec)

0

10000

20000

30000

40000

50000

Co
nt

ro
lle

r's
 lo

ad
 (i

n 
pa

ck
et

)

C1
C2
C3
C4
C5

Figure 9: The Controllers Load Distribution with the APOP Algorithm

20



Before migration After migration
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ad

 ra
tio

c1
c2
c3
c4
c5

Figure 10: The Load Ratio before and after the Load Balancing

controller to save migration cost. In the SMCLBRT, Cui et al. trigger the
switch migration based on the response time of a controller. We simulate the
same experimental test environment for these three schemes and run each
simulation for 5 minutes. The comparison of the three schemes is shown in
Figure 11.

We illustrate the performance of the controller c1 and c2 in Figure 11,
because of the statically configured threshold, the ELASTICON triggers the
migration when the controller has been overloaded, which may waste a long
time during the migration process. The SMCLBRT triggers the migration
based on the response time of the overloaded controller; therefore, they can
detect the anomalous response time and shift the load before the controller
accessed its bottleneck. With the prediction mechanism, the APOP can save
much migration cost during the load balancing.

The benefit brought by APOP is that we reduce the migration time dur-
ing the load balancing, which decrease the fluctuation during the flow peak
timing. Besides, because of the migration execution is below the bottleneck
of the facing overloaded controller, the response time between the controller
and its switches is saved a lot as well. The average response time during the
migration and the average migration time are illustrated in Figure 12 and
13, respectively.

21



100 120 140 160 180 200
Time (in sec)

0

10000

20000

30000

40000

50000

Co
nt

ro
lle

r's
 lo

ad
 (i

n 
pa

ck
et

)

APOP
SMCLBRT
ELASTICON

(a) Controller c1

100 120 140 160 180 200
Time (in sec)

0

10000

20000

30000

40000

50000

Co
nt

ro
lle

r's
 lo

ad
 (i

n 
pa

ck
et

)

APOP
SMCLBRT
ELASTICON

(b) Controller c2

Figure 11: Comparison of Migration Timing among ELASTICON, SMCLBRT and APOP

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time slot (in sec)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
nt
ro
lle

r's
 re

sp
on

se
 ti
m
e 
(in

 m
se

c)

ELASTICON
SMCLBRT
APOP

Figure 12: The Average Response Time of the Controllers during the Load Balancing

22



ELASTICON SMCLBRT APOP
0

10

20

30

40

50

60

70

Sw
itc
h 
m
ig
ra
tio

n 
tim

e 
(in

 m
se
c)

Figure 13: The Average Switch Migration Time of the ELASTICON, SMCLBRT and
APOP

To illustrate in details, the APOP can execute the migration 14% earlier
than the ELASTICON, and 5% earlier than the SMCLBRT. In the migration
time economy, the APOP reduces 48% and 12% time over the ELASTICON
and the SMCLBRT, respectively. Besides, we reduce 40% response time com-
pared with the ELASTICON, and 8% to the SMCLBRT as well. However,
flows in the network exists temporal burst; therefore, once the prediction
operates a mistake output, the migration would become a loss in the load
balancing. Based on this consideration, we measure the global overhead in
the different proportion of the temporal burst. The measurement of the
global profit against loss (with APOP) is based on Equation 18, and the
measurement of the global loss (without APOP) is based on Equation 19,
while the κ represents the proportion of the temporal burst. The calculated
result is illustrated in Figure 14.

(avg(P ) ∗ (1− κ)− avg(Lt ∗ λ1) ∗ κ) ∗ 100% (18)

avg(Lt+ω ∗ λ2) ∗ (1− κ) ∗ 100% (19)

As can be seen in Figure 14, although the temporal burst of flows might
affect the prediction, with APOP, we can achieve positive profit in global;

23



10% 20% 30% 40% 50% Average
Proportion of the temporal burst

0

10

20

30

40

50

60

70

80

90

Gl
ob
al
 p
ro
fit
 a
ga
in
st
 lo
ss
 (i
n 
%
)

Global profit against loss

0

10

20

30

40

50

60

70

80

90

Gl
ob
al
 lo
ss
 (i
n 
%
)

Global loss

Figure 14: The global overhead in the different proportion of the temporal burst

however, without APOP, the global loss is intolerable.
Based on the afore-presented simulations’ result, a discussion about the

strategies designed in our scheme is given in the following: (1) Because the
capricious flows in the network are hard to predict, we choose the short-term
prediction to avoid more harmful influence from the mistake result predicted
by the long-term prediction. (2) With the profit assessment mechanism pro-
vided by APOP, the result predicted by the short-term mechanism, the Tay-
lor’s formula, could be efficiently evaluated to avoid low-profit migrations.
(3) The profit assessment could promise a global positive profit against the
mistake prediction influenced by the low-ratio of the temporal burst. The
great performance of our APOP scheme proves that we can commendably
increase the resource utilization and reduce the fluctuation occurs by the
switch migration during the load balancing.

6. CONCLUSION

In this paper, we focused on investigating the problem of migration cost
in control plane load balancing. Inspired by the previous works, we found
that migration time is related to the load of the controller. The migration
cost obviously increased with the controller closing to its handling bottle-
neck. On the basis of this, we considered predicting the behavior of the

24



controller’s load related to its managed switches, and proposed the APOP
scheme for executing the migration phase in advance. The APOP scheme
aimed to predict the flow traffic arriving state by the method of function
approximation and assessed the profit of prediction for migration economy.
We chose Taylor’s formula, which showed a great effect in the prediction.
The switch selection with fluctuation prevention and load balance insurance
was designed in our scheme to maximize the resource utilization and reduce
the harmful effects during the migration phase. Our scheme accessed the
scalability and reliability of the SDN control plane. As presented in the sim-
ulation experiments, APOP achieved earlier migration execution and saved
the migration time and response time better than our previous work, which
proved to be an effective strategy to approach distributed control plane load
balancing in SDN.

Acknowledgments

The work was supported by the National Natural Science Foundation of
China (No. U1936220, No. 61702005, No. 61872001), the Special Fund
for Key Program of Science and Technology of Anhui Province, China (No.
18030901027), the Open Fund for Discipline Construction, Institute of Phys-
ical Science and Information Technology, Anhui University. The authors
are very grateful to the anonymous referees for their detailed comments and
suggestions regarding this paper.

References

[1] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid proto-
typing for software-defined networks, in: Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, ACM, 2010, p. 19.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, Openflow: enabling innovation in
campus networks, ACM SIGCOMM Computer Communication Review
38 (2008) 69–74.

[3] A. Tootoonchian, Y. Ganjali, Hyperflow: A distributed control plane
for openflow, in: Proceedings of the 2010 internet network management
conference on Research on enterprise networking, volume 3, 2010.

25



[4] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, Towards
an elastic distributed sdn controller, ACM SIGCOMM computer com-
munication review 43 (2013) 7–12.

[5] A. Krishnamurthy, S. P. Chandrabose, A. Gember-Jacobson,
Pratyaastha: An efficient elastic distributed sdn control plane, in: Pro-
ceedings of the third workshop on Hot topics in software defined net-
working, 2014, pp. 133–138.

[6] D.-A. Dasilva, L. Liu, N. Bessis, Y. Zhan, Enabling green it through
building a virtual desktop infrastructure, in: 2012 Eighth International
Conference on Semantics, Knowledge and Grids, IEEE, 2012, pp. 32–38.

[7] J. Panneerselvam, L. Liu, N. Antonopoulos, An approach to optimise
resource provision with energy-awareness in datacentres by combating
task heterogeneity, IEEE Transactions on Emerging Topics in Comput-
ing (2018).

[8] Y. Carlinet, N. Perrot, Energy-efficient load balancing in a sdn-based
data-center network, in: 2016 17th International Telecommunications
Network Strategy and Planning Symposium (Networks), IEEE, 2016,
pp. 138–143.

[9] E. L. Fernandes, C. E. Rothenberg, Openflow 1.3 software switch, Salao
de Ferramentas do XXXII Simpósio Brasileiro de Redes de Computa-
dores e Sistemas Distribuıdos SBRC (2014) 1021–1028.

[10] Y.-T. Chen, C.-Y. Li, K. Wang, A fast converging mechanism for load
balancing among sdn multiple controllers, in: 2018 IEEE Symposium on
Computers and Communications (ISCC), IEEE, 2018, pp. 00682–00687.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
S. Shenker, Nox: towards an operating system for networks, ACM
SIGCOMM Computer Communication Review 38 (2008) 105–110.

[12] L. Cui, F. R. Yu, Q. Yan, When big data meets software-defined net-
working: Sdn for big data and big data for sdn, IEEE network 30 (2016)
58–65.

26



[13] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al., Onix: A dis-
tributed control platform for large-scale production networks., in: OSDI,
volume 10, 2010, pp. 1–6.

[14] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann, Logically
centralized?: state distribution trade-offs in software defined networks,
in: Proceedings of the first workshop on Hot topics in software defined
networks, ACM, 2012, pp. 1–6.

[15] D. Erickson, The beacon openflow controller, in: Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, ACM, 2013, pp. 13–18.

[16] S. Hassas Yeganeh, Y. Ganjali, Kandoo: a framework for efficient and
scalable offloading of control applications, in: Proceedings of the first
workshop on Hot topics in software defined networks, ACM, 2012, pp.
19–24.

[17] Y. Zhou, M. Zhu, L. Xiao, L. Ruan, W. Duan, D. Li, R. Liu, M. Zhu, A
load balancing strategy of sdn controller based on distributed decision,
in: 2014 IEEE 13th International Conference on Trust, Security and
Privacy in Computing and Communications, IEEE, 2014, pp. 851–856.

[18] G. Cheng, H. Chen, Z. Wang, S. Chen, Dha: Distributed decisions on
the switch migration toward a scalable sdn control plane, in: 2015 IFIP
Networking Conference (IFIP Networking), IEEE, 2015, pp. 1–9.

[19] F. Cimorelli, F. D. Priscoli, A. Pietrabissa, L. R. Celsi, V. Suraci, L. Zuc-
caro, A distributed load balancing algorithm for the control plane in
software defined networking, in: 2016 24th Mediterranean Conference
on Control and Automation (MED), IEEE, 2016, pp. 1033–1040.

[20] J. Yu, Y. Wang, K. Pei, S. Zhang, J. Li, A load balancing mecha-
nism for multiple sdn controllers based on load informing strategy, in:
2016 18th Asia-Pacific Network Operations and Management Sympo-
sium (APNOMS), IEEE, 2016, pp. 1–4.

[21] C. Liang, R. Kawashima, H. Matsuo, Scalable and crash-tolerant load
balancing based on switch migration for multiple open flow controllers,

27



in: 2014 Second International Symposium on Computing and Network-
ing, IEEE, 2014, pp. 171–177.

[22] C. Wang, B. Hu, S. Chen, D. Li, B. Liu, A switch migration-based
decision-making scheme for balancing load in sdn, IEEE Access 5 (2017)
4537–4544.

[23] Y. Zhou, K. Zheng, W. Ni, R. P. Liu, Elastic switch migration for
control plane load balancing in sdn, IEEE Access 6 (2018) 3909–3919.

[24] A. Filali, S. Cherkaoui, A. Kobbane, Prediction-based switch migration
scheduling for sdn load balancing, in: ICC 2019-2019 IEEE International
Conference on Communications (ICC), IEEE, 2019, pp. 1–6.

[25] S. Floodlight, Openflow controller, Web: https://github.
com/floodlight/floodlight 2 (????).

[26] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The
internet topology zoo, IEEE Journal on Selected Areas in Communica-
tions 29 (2011) 1765–1775.

[27] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, L. R. Prete, Using
mininet for emulation and prototyping software-defined networks, in:
2014 IEEE Colombian Conference on Communications and Computing
(COLCOM), Ieee, 2014, pp. 1–6.

[28] R. Sherwood, Y. Kok-Kiong, Cbench: an open-flow controller bench-
marker, URL http://archive. openflow. org/wk/index. php/Oflops
(2010).

[29] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, K. Gibbs, Iperf: The
tcp/udp bandwidth measurement tool. htt p, dast. nlanr. net/Projects
(2005) 38.

[30] J. Cui, Q. Lu, H. Zhong, M. Tian, L. Liu, A load-balancing mechanism
for distributed sdn control plane using response time, IEEE Transactions
on Network and Service Management 15 (2018) 1197–1206.

28


