posted on 2016-12-01, 11:08authored byJ. Bowden, F. Del Greco M, C. Minelli, G. Davey Smith, Nuala A. Sheehan, John R. Thompson
Background: MR-Egger regression has recently been proposed as a method for Mendelian randomization (MR) analyses incorporating summary data estimates of causal effect from multiple individual variants, which is robust to invalid instruments. It can be used to test for directional pleiotropy and provides an estimate of the causal effect adjusted for its presence. MR-Egger regression provides a useful additional sensitivity analysis to the standard inverse variance weighted (IVW) approach that assumes all variants are valid instruments. Both methods use weights that consider the single nucleotide polymorphism (SNP)-exposure associations to be known, rather than estimated. We call this the `NO Measurement Error' (NOME) assumption. Causal effect estimates from the IVW approach exhibit weak instrument bias whenever the genetic variants utilized violate the NOME assumption, which can be reliably measured using the F-statistic. The effect of NOME violation on MR-Egger regression has yet to be studied.
Methods: An adaptation of the I^2 statistic from the field of meta-analysis is proposed to quantify the strength of NOME violation for MR-Egger. It lies between 0 and 1, and indicates the expected relative bias (or dilution) of the MR-Egger causal estimate in the two-sample MR context. We call it I^2GX. The method of simulation extrapolation is also explored to counteract the dilution. Their joint utility is evaluated using simulated data and applied to a real MR example.
Results: In simulated two-sample MR analyses we show that, when a causal effect exists, the MR-Egger estimate of causal effect is biased towards the null when NOME is violated, and the stronger the violation (as indicated by lower values of I^2GX), the stronger the dilution. When additionally all genetic variants are valid instruments, the type I error rate of the MR-Egger test for pleiotropy is inflated and the causal effect underestimated. Simulation extrapolation is shown to substantially mitigate these adverse effects. We demonstrate our proposed approach for a two-sample summary data MR analysis to estimate the causal effect of low-density lipoprotein on heart disease risk. A high value of I^2GX close to 1 indicates that dilution does not materially affect the standard MR-Egger analyses for these data.
Conclusions: Care must be taken to assess the NOME assumption via the I^2GX statistic before implementing standard MR-Egger regression in the two-sample summary data context. If I^2GX is sufficiently low (less than 90%), inferences from the method should be interpreted with caution and adjustment methods considered.
Funding
Jack Bowden is supported by an MRC Methodology Research
Fellowship (grant MR/N501906/1). George Davey Smith is supported
by the MRC Integrative Epidemiology Unit at the University
of Bristol (grant code MC_UU_12013/1)
History
Citation
International Journal of Epidemiology, 2016, 1–14
Author affiliation
/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Health Sciences
Version
VoR (Version of Record)
Published in
International Journal of Epidemiology
Publisher
Oxford University Press (OUP) for International Epidemiological Association