University of Leicester
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Bayesian analysis of censored response data in family-based genetic association studies

journal contribution
posted on 2016-09-20, 15:54 authored by Fabiola Del Greco M, Cristian Pattaro, Cosetta Minelli, John R. Thompson
Biomarkers are subject to censoring whenever some measurements are not quantifiable given a laboratory detection limit. Methods for handling censoring have received less attention in genetic epidemiology, and censored data are still often replaced with a fixed value. We compared different strategies for handling a left-censored continuous biomarker in a family-based study, where the biomarker is tested for association with a genetic variant, S, adjusting for a covariate, X. Allowing different correlations between X and S, we compared simple substitution of censored observations with the detection limit followed by a linear mixed effect model (LMM), Bayesian model with noninformative priors, Tobit model with robust standard errors, the multiple imputation (MI) with and without S in the imputation followed by a LMM. Our comparison was based on real and simulated data in which 20% and 40% censoring were artificially induced. The complete data were also analyzed with a LMM. In the MICROS study, the Bayesian model gave results closer to those obtained with the complete data. In the simulations, simple substitution was always the most biased method, the Tobit approach gave the least biased estimates at all censoring levels and correlation values, the Bayesian model and both MI approaches gave slightly biased estimates but smaller root mean square errors. On the basis of these results the Bayesian approach is highly recommended for candidate gene studies; however, the computationally simpler Tobit and the MI without S are both good options for genome-wide studies.

History

Citation

Biometrical Journal, 2016, 58 (5), pp. 1039-1053

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Health Sciences

Version

  • AM (Accepted Manuscript)

Published in

Biometrical Journal

Publisher

Wiley-VCH Verlag for 1.Deutsche Region der Internationalen Biometrischen Gesellschaft (IBS-DR) 2.Region Österreich-Schweiz (ROeS) der Internationalen Biometrischen Gesellschaft (IBS)

issn

0323-3847

eissn

1521-4036

Acceptance date

2016-04-06

Copyright date

2016

Publisher version

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201400107/abstract;jsessionid=CFFB8E97D9D5B82EBC1D7279B817FE2E.f03t01

Notes

The file associated with this record is under permanent embargo at the request of the publisher. The article may be available from the links above.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC