University of Leicester
Browse

Blessing of dimensionality: mathematical foundations of the statistical physics of data

Download (489.91 kB)
journal contribution
posted on 2018-04-05, 10:27 authored by A. N. Gorban, I. Y. Tyukin
The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality. This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher’s discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction. This article is part of the theme issue ‘Hilbert’s sixth problem’.

Funding

This work was supported by Innovate UK grant nos KTP009890 and KTP010522. I.Y.T. was supported by the Russian Ministry of Education and Science, projects 8.2080.2017/4.6 (assessment and computational support for knowledge transfer algorithms between AI systems) and 2.6553.2017/BCH Basic Part.

History

Citation

Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 2018, 376: 20170237.

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics

Version

  • AM (Accepted Manuscript)

Published in

Philosophical Transactions A: Mathematical

Publisher

The Royal Society

issn

1364-503X

eissn

1471-2962

Acceptance date

2018-01-04

Copyright date

2018

Available date

2018-04-05

Publisher version

http://rsta.royalsocietypublishing.org/content/376/2118/20170237

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC