University of Leicester
Browse

Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

Download (2.62 MB)
journal contribution
posted on 2022-01-19, 12:03 authored by JC Algaba, J Anczarski, K Asada, M Baloković, S Chandra, YZ Cui, AD Falcone, M Giroletti, C Goddi, K Hada, D Haggard, S Jorstad, A Kaur, T Kawashima, G Keating, JY Kim, M Kino, S Komossa, EV Kravchenko, TP Krichbaum, SS Lee, RS Lu, M Lucchini, S Markoff, J Neilsen, MA Nowak, J Park, G Principe, V Ramakrishnan, MT Reynolds, M Sasada, SS Savchenko, KE Williamson, K Akiyama, A Alberdi, W Alef, R Anantua, R Azulay, AK Baczko, D Ball, J Barrett, D Bintley, BA Benson, L Blackburn, R Blundell, W Boland, KL Bouman, GC Bower, H Boyce, M Bremer, CD Brinkerink, R Brissenden, S Britzen, AE Broderick, D Broguiere, T Bronzwaer, DY Byun, JE Carlstrom, A Chael, CK Chan, S Chatterjee, K Chatterjee, MT Chen, Y Chen, PM Chesler, I Cho, P Christian, JE Conway, JM Cordes, TM Crawford, GB Crew, A Cruz-Osorio, J Davelaar, M De Laurentis, R Deane, J Dempsey, G Desvignes, J Dexter, SS Doeleman, RP Eatough, H Falcke, J Farah, VL Fish, E Fomalont, HA Ford, R Fraga-Encinas, P Friberg, CM Fromm, A Fuentes, P Galison, CF Gammie, R García, O Gentaz, B Georgiev, R Gold, JL Gómez, AI Gómez-Ruiz, M Gu, M Gurwell, MH Hecht
In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.

History

Citation

The EHT MWL Science Working Group et al 2021 ApJL 911 L11

Author affiliation

Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Astrophysical Journal Letters

Volume

911

Issue

1

Pagination

L11 - L11

Publisher

American Astronomical Society [Client Organisation] IOP Publishing [Society Publisher]

issn

2041-8205

eissn

2041-8213

Copyright date

2021

Available date

2021-04-14

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC