University of Leicester
Browse

Brown dwarfs and low-mass stars in the Pleiades and Praesepe: membership and binarity

Download (646.02 kB)
journal contribution
posted on 2009-12-08, 16:24 authored by D.J. Pinfield, P.D. Dobbie, Richard F. Jameson, I.A. Steele, H.R.A. Jones, A.C. Katsiyannis
We present near-infrared J-, H- and K-band photometry and optical spectroscopy of low-mass star and brown dwarf (BD) candidates in the Pleiades and Praesepe open clusters. We flag non-members from their position in K, I−K and J, J−K colour–magnitude diagrams (CMDs), and J−H, H−K two-colour diagrams. In general, the dust-free NextGen model isochrones of the Lyon Group fit the K, I−K CMDs well for stars with I−K∼ 1.5–3.5. However, Pleiades stars with K≃ 10.5–13 (MK≃ 5–7.5) are rather redder than the isochrones. We also identify this effect amongst Per sources from the literature, but find no evidence of it for field stars from the literature. The NextGen isochrones fit the J, J−K CMDs of both clusters very well in this photometric range. It is possible that the I−K colour of youthful stars is affected by the presence of magnetic activity. The Lyon Group's Dusty isochrones fit both K, I−K and K, J−K Pleiades CMDs well for I−K≃ 4.3–6/J−K≃ 1.1–1.4. In between these colour ranges the Pleiades cluster sequence comprises three portions. Starting at the bluer side, there is a gap where very few sources are found (the gap size is ΔI∼ 0.5, ΔJ∼ΔK∼ 0.3), probably resulting from a sharp local drop in the magnitude–mass relation. Then the sequence is quite flat from I−K∼ 3.5–4. Finally, the sequence turns over and drops down to join the Dusty isochrone. We also compare model atmosphere colours to the two-colour diagrams of the clusters. The NextGen models are seen to be ∼0.1 too blue in H−K and ∼0.1 too red in J−H for Teff > 4000 K. However, they are in reasonable agreement with the data at Teff∼ 3200 K. For Teff∼ 2800–3150 K, the colours of Pleiades and Praesepe sources are significantly different, where Praesepe sources are ∼0.1 bluer in J−H and up to ∼0.1 redder in H−K. These differences could result from gravity-sensitive molecular opacities. Cooler Praesepe sources then agree well with the dusty models, suggesting that dust is beginning to form in Praesepe sources around 2500 K. However, Pleiades sources remain consistent with the NextGen models (and inconsistent with the dusty models) down to Teff values of ∼2000 K. It is possible that dust formation does not begin until lower Teff values in sources with lower surface gravities (and hence lower atmospheric pressures). We also identify unresolved binaries in both clusters, and estimate mass ratios (q) for Pleiades BDs. Most of these have q > 0.7, however, 3/18 appear to have lower q values. We determine the binary fraction (BF) for numerous mass ranges in each cluster, and find that it is generally rising towards lower masses. We find a BD BF of 50+11−10 per cent. We also find some evidence suggesting that the BF–q distribution is flat for 0.5–0.35 M⊙, in contrast to solar-type stars.

History

Citation

Monthly Notices of the Royal Astronomical Society, 2003, 342 (4), pp.1241-1259

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Blackwell

issn

0035-8711

eissn

1365-2966

Copyright date

2003

Available date

2009-12-08

Publisher version

http://mnras.oxfordjournals.org/content/342/4/1241

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC