University of Leicester
Browse

COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization

Download (2.89 MB)
journal contribution
posted on 2023-07-12, 08:20 authored by A Hamza, M Attique Khan, SH Wang, A Alqahtani, S Alsubai, A Binbusayyis, HS Hussein, TM Martinetz, H Alshazly
Coronavirus disease 2019 (COVID-19) is a highly contagious disease that has claimed the lives of millions of people worldwide in the last 2 years. Because of the disease's rapid spread, it is critical to diagnose it at an early stage in order to reduce the rate of spread. The images of the lungs are used to diagnose this infection. In the last 2 years, many studies have been introduced to help with the diagnosis of COVID-19 from chest X-Ray images. Because all researchers are looking for a quick method to diagnose this virus, deep learning-based computer controlled techniques are more suitable as a second opinion for radiologists. In this article, we look at the issue of multisource fusion and redundant features. We proposed a CNN-LSTM and improved max value features optimization framework for COVID-19 classification to address these issues. The original images are acquired and the contrast is increased using a combination of filtering algorithms in the proposed architecture. The dataset is then augmented to increase its size, which is then used to train two deep learning networks called Modified EfficientNet B0 and CNN-LSTM. Both networks are built from scratch and extract information from the deep layers. Following the extraction of features, the serial based maximum value fusion technique is proposed to combine the best information of both deep models. However, a few redundant information is also noted; therefore, an improved max value based moth flame optimization algorithm is proposed. Through this algorithm, the best features are selected and finally classified through machine learning classifiers. The experimental process was conducted on three publically available datasets and achieved improved accuracy than the existing techniques. Moreover, the classifiers based comparison is also conducted and the cubic support vector machine gives better accuracy.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for supporting this study through the Large Groups Project under grant number (RGP.2/16/43).

History

Citation

Hamza, A., Attique Khan, M., Wang, S.H., Alqahtani, A., Alsubai, S., Binbusayyis, A., Hussein, H.S., Martinetz, T.M. and Alshazly, H., 2022. COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization. Frontiers in Public Health, 10, p.948205.

Author affiliation

Department of Mathematics

Version

  • VoR (Version of Record)

Published in

Frontiers in Public Health

Volume

10

Pagination

948205

Publisher

Frontiers Media

issn

2296-2565

eissn

2296-2565

Acceptance date

2022-08-01

Copyright date

2022

Available date

2022-08-30

Spatial coverage

Switzerland

Language

eng

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC