University of Leicester
Browse

File(s) under permanent embargo

Reason: This item is currently closed access.

Ca2+ influx through P2X1 receptors amplifies P2Y1 receptor-evoked Ca2+ signaling and ADP-evoked platelet aggregation

journal contribution
posted on 2016-04-13, 08:23 authored by Sarah Jones, Richard J. Evans, Martyn P. Mahaut-Smith
Many cells express both P2X cation channels and P2Y G-protein-coupled receptors that are costimulated by nucleotides released during physiologic or pathophysiologic responses. For example, during hemostasis and thrombosis, ATP-gated P2X1 channels and ADP-stimulated P2Y1 and P2Y12 G-protein coupled receptors play important roles in platelet activation. It has previously been reported that P2X1 receptors amplify P2Y1-evoked Ca(2+) responses in platelets, but the underlying mechanism and influence on function is unknown. In human platelets, we show that maximally activated P2X1 receptors failed to stimulate significant aggregation but could amplify the aggregation response to a submaximal concentration of ADP. Costimulation of P2X1 and P2Y1 receptors generated a superadditive Ca(2+) increase in both human platelets and human embryonic kidney 293 (HEK293) cells via a mechanism dependent on Ca(2+) influx rather than Na(+) influx or membrane depolarization. The potentiation, due to an enhanced P2Y1 response, was observed if ADP was added up to 60 seconds after P2X1 activation. P2X1 receptors also enhanced Ca(2+) responses when costimulated with type 1 protease activated and M1 muscarinic acetylcholine receptors. The P2X1-dependent amplification of Gq-coupled [Ca(2+)]i increase was mimicked by ionomycin and was not affected by inhibition of protein kinase C, Rho-kinase, or extracellular signal-regulated protein kinase 1/2, which suggests that it results from potentiation of inositol 1,4,5-trisphosphate receptors and/or phospholipase C. We conclude that Ca(2+) influx through P2X1 receptors amplifies Ca(2+) signaling through P2Y1 and other Gq-coupled receptors. This represents a general form of co-incidence detection of ATP and coreleased agonists, such as ADP at sites of vascular injury or synaptic transmitters acting at metabotropic Gq-coupled receptors.

History

Citation

Molecular Pharmacology, 2014, 86 (3), pp. 243-251

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Molecular & Cell Biology

Version

  • VoR (Version of Record)

Published in

Molecular Pharmacology

Publisher

American Society for Pharmacology and Experimental Therapeutics (ASPET)

issn

0026-895X

eissn

1521-0111

Acceptance date

2014-06-12

Copyright date

2014

Publisher version

http://molpharm.aspetjournals.org/content/86/3/243

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC