University of Leicester
Browse

Cell-autonomous programming of rat adipose tissue insulin signalling proteins by maternal nutrition

Download (620.55 kB)
journal contribution
posted on 2017-05-18, 13:43 authored by Malgorzata S. Martin-Gronert, Denise S. Fernandez-Twinn, Martin Bushell, Kenneth Siddle, Susan E. Ozanne
AIMS/HYPOTHESIS: Individuals with a low birthweight have an increased risk of developing type 2 diabetes mellitus in adulthood. This is associated with peripheral insulin resistance. Here, we aimed to determine whether changes in insulin signalling proteins in white adipose tissue (WAT) can be detected prior to the onset of impaired glucose tolerance, determine whether these changes are cell-autonomous and identify the underlying mechanisms involved. METHODS: Fourteen-month-old male rat offspring born to dams fed a standard protein (20%) diet or a low (8%) protein diet throughout gestation and lactation were studied. Fat distribution and adipocyte size were determined. Protein content and mRNA expression of key insulin signalling molecules were analysed in epididymal WAT and in pre-adipocytes that had undergone in vitro differentiation. RESULTS: The offspring of low protein fed dams (LP offspring) had reduced visceral WAT mass, altered fat distribution and a higher percentage of small adipocytes in epididymal WAT. This was associated with reduced levels of IRS1, PI3K p110β, Akt1 and PKCζ proteins and of phospho-Akt Ser473. Corresponding mRNA transcript levels were unchanged. Similarly, in vitro differentiated adipocytes from LP offspring showed reduced protein levels of IRβ, IRS1, PI3K p85α and p110β subunits, and Akt1. Levels of Akt Ser473 and IRS1 Tyr612 phosphorylation were reduced, while IRS1 Ser307 phosphorylation was increased. CONCLUSIONS/INTERPRETATION: Maternal protein restriction during gestation and lactation changes the distribution and morphology of WAT and reduces the levels of key insulin signalling proteins in the male offspring. This phenotype is retained in in vitro differentiated adipocytes, suggesting that programming occurs via cell-autonomous mechanism(s).

History

Citation

Diabetologia, 2016, 59 (6), pp. 1266-1275

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/MBSP Non-Medical Departments/Molecular & Cell Biology

Version

  • VoR (Version of Record)

Published in

Diabetologia

Publisher

Springer Verlag

eissn

1432-0428

Acceptance date

2016-02-03

Copyright date

2016

Available date

2017-05-18

Publisher version

https://link.springer.com/article/10.1007/s00125-016-3905-8

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC