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Abstract 

Decision theory and game theory rest on a fundamental assumption that players seek to maximize their 
individual utilities, but in some interactive decisions it seems intuitively reasonable to aim to maximize the 
utility of the group of players as a whole. Such team reasoning requires collective preferences and a distinctive 
mode of reasoning from preferences to decisions. Findings from two experiments provide evidence for 
collective preferences and team reasoning. In lifelike vignettes (Experiment 1) and abstract games (Experiment 
2) with certain structural properties, most players preferred team-reasoning strategies to strategies supporting 
unique Nash equilibria, although individually rational players should choose equilibrium strategies. These 
findings suggest that team reasoning predicts strategy choices more powerfully than orthodox game theory in 
some games. 

PsycINFO classification: 2340; 3020 
Keywords: Collective rationality; Game theory; Nash equilibrium; Payoff dominance; Team 
reasoning 
 
 
1. Introduction 

Expected utility (EU) theory (von Neumann & Morgenstern, 1947) and subjective 
expected utility (SEU) theory (Savage, 1954/1972) rest on a fundamental assumption of 
methodological individualism, according to which decision makers are rational in the sense of 
attempting to do the best for themselves as individuals in all circumstances that arise (see also 
Fishburn, 1989; Rabin, 1998). Utilities are measures of the subjective desirability of 
outcomes or events, corresponding to individual preferences, and in games they are 
represented by payoffs. Underlying these expected utility theories is a narrow but clear and 
precise conception of instrumental rationality (also called means-end rationality), according 
to which individuals act to maximize their individual expected utilities relative to their 
knowledge and beliefs. This interpretation of rationality was summed up by Bertrand Russell 
(1954) as “the choice of the right means to an end that you wish to achieve” (p. 8).  

In interactive decisions or games, utilities may incorporate regard for the utilities of 
others affected by the outcomes, but according to standard interpretations, decision makers 
act solely to maximize their individual utilities after incorporating such other-regarding 
considerations into their utility functions. Research into judgment and decision making has 
revealed that human agents often deviate from full rationality in practice, because they are 
limited by bounded rationality (Simon, 1956, 1982) that constrains them, in difficult 
decisions, to use rough-and-ready judgmental heuristics that are faster and more frugal 
(Gigerenzer & Goldstein, 1996; Gigerenzer & Selten, 2001; Gigerenzer, Todd, & the ABC 
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Research Group, 1999) but that sometimes generate biased judgments and decisions 
(Kahneman, Slovic, & Tversky, 1982; Kahneman & Tversky, 2000). 

In interactive decisions or games, there is the possibility of a far more radical departure 
from individual rationality that violates methodological individualism itself. In certain types 
of games, intuition and casual observation suggest that players do not merely deviate from 
perfect rationality by implementing fallible heuristics; they sometimes adopt a different 
principle of maximization altogether. In these games, players may not even attempt to 
maximize their individual expected utilities but may prefer instead to maximize the collective 
utility of the group of players involved in the game (Gilbert, 1987, 1994; Hurley, 1989, 2005; 
Sugden, 2000). Decision making based on such collective preferences is usually called team 
reasoning, and it is quite distinct from individual utility maximization, even with other-
regarding utilities, as we shall show. Theories of team reasoning generally assume that 
players are motivated to maximize either collective or individual utilities depending on 
circumstances (Bacharach, 1999, 2006; Gold & Sugden, in press; Sugden, 1993, 2005). 
Orthodox decision theory may be considered a special case in which the group happens to be 
a singleton. The underlying idea of team reasoning can be traced back to Regan (1980) and 
ultimately to Hodgson (1967).  
 
1.1. Payoff dominance 

An appealing feature of team reasoning is that it explains phenomena of interactive 
decision making that defy explanation within the framework of game theory, which is firmly 
rooted in individual utility maximization. A striking example is the powerful intuitive appeal 
of payoff-dominant Nash equilibria. In a dyadic (two-player) game, a Nash equilibrium is a 
pair of strategies that are best replies to each other in the sense that each maximizes the 
payoff of the player choosing it, given the strategy chosen by the co-player. Equivalently, a 
Nash equilibrium is an outcome from which neither player could profit by deviating 
unilaterally and that therefore gives neither player retrospective grounds to regret the chosen 
strategy. Furthermore, if a game has only one Nash equilibrium, then rational players are 
bound to choose it, according to game theory, because only by doing so can they both play 
best-reply strategies—in any other outcome, at least one player is not choosing a best reply to 
the co-player’s strategy. If a game has multiple equilibria, and one is better for both players 
than any other, then it seems natural for rational players to choose the payoff-dominant 
equilibrium but, perhaps surprisingly, this principle cannot be derived or justified from game 
theory’s fundamental assumptions (Harsanyi & Selten, 1988).  
 

  II 
  L R 

 L 9, 9 0, 8I  R 8, 0 7, 7 

  II 
  L R 

 L 2, 2 0, 0  I  R 0, 0 1, 1  
 

Fig. 1. Games exhibiting payoff dominance: Stag Hunt game (left) and Hi-Lo matching game 
(right). 
 

Payoff dominance has been discussed most frequently in relation to the Stag Hunt game 
and the Hi-Lo matching game (see Fig. 1). In each game, Player I chooses row L or R, Player 
II chooses column L or R, and the pair of numbers in each cell are the payoffs to Players I and 



II respectively for that outcome. In both games, (L, L) and (R, R) are Nash equilibria, and (L, 
L) is Pareto-dominant, because it offers both players better payoffs. The Stag Hunt game is 
complicated by the fact that (R, R) risk-dominates (L, L) in the sense that a player risks a 
worse possible payoff (zero) by choosing L than R;1 but we expect rational players to choose 
(L, L) nonetheless, because payoff dominance is a more powerful consideration than risk 
dominance (Colman, 2003; Harsanyi & Selten, 1988). On the other hand, it is worth 
commenting that a player motivated by a competitive social value orientation would 
necessarily choose R in the Stag Hunt game, because it offers the only possibility of obtaining 
a higher payoff than the co-player (Van Lange, 1999). These complications are absent from 
the Hi-Lo game on the right of Fig. 1, where both strategies are equally risky, there is no 
scope for competitiveness, and the payoff-dominance phenomenon is therefore completely 
transparent. 

The Hi-Lo game may seem jejune, but it can arise in many natural strategic interactions 
between human or nonhuman decision makers. In a football game, for example, suppose 
Player I can pass the ball either left or right for Player II to shoot for goal, and Player II can 
move left or right to intercept it. If the chances of scoring are better if both choose left than if 
both choose right, and zero otherwise, then the strategic structure is Hi-Lo (Bacharach, 2006, 
pp. 37, 124–127; Sugden, 2005). Similarly (from a strategic perspective), when two Apis 
mellifera honey bee scouts return to their common swarm after discovering different potential 
nesting sites, one objectively superior to the other, they also play the Hi-Lo game. They 
dance to communicate the locations and attractiveness of their sites—merely indicating the 
payoffs of the game, since bees cannot negotiate or discuss their intentions—and on the basis 
of this information, they reach agreement on the best site (with the higher payoffs) and 
choose it on behalf of the swarm (Seeley & Buhrman, 2001; Seeley & Visscher, 2004). 

The payoff-dominance problem arises from the surprising fact that game theory provides 
no justification for choosing L (Casajus, 2001; Colman, 2003; Cooper, DeJong, Forsythe, & 
Ross, 1990; Harsanyi & Selten, 1998; Hollis, 1998; Janssen, 2001; Van Huyck, Battalio, & 
Beil, 1990). If both players are rational individual expected utility maximizers, then Player I 
has a reason to choose L if and only if there is a reason to expect Player II to choose it; but 
there is no such reason, because Hi-Lo is a symmetric game and Player II faces the identical 
dilemma. This leads to an infinite regress of the type “I expect my co-player to expect me to 
expect . . .” that provides neither player with any rational justification for choosing L. In an 
empirical study, on the other hand, it is hardly surprising that almost 100 per cent of players 
chose L (Bardsley, Mehta, Starmer, & Sugden, as cited in Gold & Sugden, in press). What 
then accounts for the powerful intuitive appeal of the L strategy? 

Team reasoning offers a persuasive solution to this payoff-dominance puzzle, but it 
requires a radical departure from orthodox game theory and decision theory, because it 
assumes that players do not attempt to maximize their individual utilities. Instead of asking 
themselves What do I want, and what should I do to achieve it? the players are assumed to 
ask What do we want, and what should I do to help achieve it? The answer is then obvious—
we want (L, L) and I should play my part in achieving it by choosing L. Team-reasoning 
players adopt the following distinctive mode of reasoning from preferences to decisions or, in 
other words, of formulating reasons for decisions on the basis of their own and other players’ 
individual preferences (Bacharach, 1999, 2006; Sugden, 1993, 2005; Gold & Sugden, in 
press). First, they identify a profile of strategies that maximizes the collective payoff of the 
group of players as a whole; then, if this profile is unique, they choose and play their 
component strategies of it. If the collectively rational profile is not unique, then the theory is 
indeterminate. Janssen’s (2001) principle of individual team member rationality is a variant 
of this fundamental idea (see also Janssen, 2006). In Bacharach’s stochastic version of the 



theory, players’ decisions to choose team-reasoning strategies depend partly on the subjective 
probability that they assign to the other player(s) doing the same. 
 
1.2. Spurious solutions 

Team reasoning is a deceptively subtle concept, easily misunderstood by anyone inured 
to individual rationality. There is a strong temptation to assume that the problem it is 
designed to solve does not exist, each player being justified in choosing L and assuming that 
the co-player will choose L, because this maximizes both players’ payoffs. But, from a purely 
individualistic perspective, Player I has no reason to assume that Player II will choose L, 
because it maximizes Player II’s payoff only if Player I also chooses L, and if Player I were 
to choose R instead of L, then Player II’s payoff from choosing L would be zero. Player II’s 
(individualistic) justification for choosing L depends entirely on Player I choosing L, but 
Player II has no good reason to assume that Player I will choose L. From Player I’s 
(individualistic) point of view, choosing L is payoff-maximizing only if Player II also 
chooses L, otherwise it yields a zero payoff. Hence, according to individualistic rationality, 
Player I has a reason to choose L only if Player II has a reason to choose it, and Player II has 
a reason to choose it only if Player I has a reason to choose it. In other words, individualistic 
rationality provides neither player with any independent justification for choosing L. 

A common fallacy is the belief that a justification for choosing L can be found within 
game theory for players with other-regarding utility functions whose arguments include their 
co-players’ payoffs. For example, to model a player who attaches some weight to a co-
player’s payoffs, the player’s utility may be represented by a weighted linear function of the 
player’s own payoff and the co-player’s payoff. This method of modeling other-regarding 
preferences was introduced by Edgeworth (1881/1967, pp. 101–102) and has been 
rediscovered or adapted by more recent game theorists. It results in payoff transformations 
that alter the strategic structure of the well-known Prisoner’s Dilemma game, providing 
individually rational players with a reason to cooperate (Rabin, 1993), as shown below, but it 
leaves the structure of other games, including Hi-Lo, unchanged. Other-regarding utilities are 
no better than purely selfish utilities in solving the payoff-dominance puzzle in its simplest 
manifestations, for the following reason. 

Suppose an other-regarding Player I in the Hi-Lo game shown in Fig. 1 (right) has a 
utility function that weights own and co-player’s payoffs .60 and .40 respectively. This 
implies that Player I’s satisfaction with any outcome depends 60% on Player I’s own payoffs 
and 40% on Player II’s payoffs. Then, in the outcome (L, L), Player I’s transformed payoff is 
(.60 × 2) + (.40 × 2) = 2, exactly the same as before, and in every other outcome, the effect of 
the transformation is the same: the transformed payoffs are all identical to the original 
payoffs! Furthermore, this remains so for any weights whatsoever that Player I might assign 
to own and co-player’s payoffs. Payoff transformations have no effect whatsoever on the Hi-
Lo game, because it is a pure coordination game in which the players’ payoffs are identical in 
every outcome, in contrast to the Prisoner’s Dilemma game, in which the players’ payoffs 
differ in some outcomes. In the standard Prisoner’s Dilemma game (Fig. 2, left), each player 
chooses between C (cooperate) and D (defect). The only Nash equilibrium is joint defection 
(D, D), but in a payoff-transformed version of the game (Fig. 2, right), in which each player’s 
payoffs are weighted averages of own payoff (.60) and co-player’s payoff (.40), the unique 
Nash equilibrium is joint cooperation (C, C). In the outcome (D, C), for example, Player I’s 
transformed payoff is (.60 × 4) + (.40 × 1) = 2.8, and Player II’s transformed payoff is (.60 × 
1) + (.40 × 4) = 2.2. Payoff transformations alter the strategic structure of the Prisoner’s 
Dilemma game and in some cases, such as this, provide individually rational players with a 
reason for cooperating, but in the Hi-Lo game, they leave the structure unchanged and 
provide no individually rational justification for choosing L, despite the incorporation of 



other-regarding utilities. Other-regarding utilities cannot solve the payoff-dominance problem 
without team reasoning. 
 

  II 
  C D 

 C 3, 3 1, 4  I  D 4, 1 2, 2  

  II 
  C D 

 C 3.0, 3.0 2.2, 2.8  I  D 2.8, 2.2 2.0, 2.0  
 
Fig. 2. The Prisoner’s Dilemma game (left) and a payoff-transformed version (right) with 
own payoffs weighted .60 and co-player’s payoffs weighted 0.4. 

 
This limitation of individual rationality comes into sharp focus in a prominent integrative 

model of social value orientations (Van Lange, 1999) in which orientations are interpreted as 
maximizations of various linear functions of the variables W1 (own payoff), W2 (co-player’s 
payoff), and W3 (payoff equality, evidently equal to the negative of the absolute difference in 
payoffs: –|W1 – W2|). We can easily prove that no linear combination of these variables solves 
the payoff-dominance problem. Note first that, because W3 = –|W1 – W2|, any linear function 
of W1, W2, and W3 can be expressed as aW1 + bW2, where a and b are suitably chosen real 
numbers. Furthermore, because W1 = W2 in the Hi-Lo game, maximizing aW1 + bW2 amounts 
to maximizing W1 for any values of a and b, and this is simply individual payoff 
maximization, which leaves neither player with any rational justification for choosing L, as 
we have shown. This applies even to the cooperative or prosocial social value orientation, in 
which each player’s payoff is the sum of the payoffs to both players. Applying this 
transformation (W1 + W2) to the Hi-Lo game in Fig. 1 (right) merely produces another Hi-Lo 
game with all the payoffs doubled and no more reason to choose L than before. This approach 
fails because decision making remains individualistic. Team reasoning requires not only a 
cooperative social value orientation but also a collective mode of generating decisions from 
preferences. 

It is also fallacious to believe that the payoff-dominance problem can be solved by 
modeling players’ beliefs about their co-players’ strategies with subjective probabilities, 
according to the type of game-theoretic analysis that became popular after the introduction of 
Bayesian game theory (Harsanyi, 1967–1968). Suppose Player I formulates the belief that the 
probability is p = .75 that Player II will choose L in the Hi-Lo game (Fig. 1, right). If any 
such belief were valid, then a utility-maximizing Player I would indeed have a rational 
justification for choosing L, because the subjective expected utility of L, (.75 × 2) + (.25 × 0) 
= 1.50, would then exceed that of R, (.75 × 0) + (.25 × 1) = 0.25, but the following simple 
reductio ad absurdum proof exposes the fallacy. In game theory, the properties of the game 
and the players’ rationality are assumed to be common knowledge (Aumann, 1976; Lewis, 
1969, pp. 52–68), and an implication of this, called the transparency of reason, is that any 
rational deduction about the game must also be common knowledge (Bacharach, 1987). It 
follows from this that if Player I’s choice of L were indeed rationally justified, then Player II, 
assumedly also rational, would anticipate it and would choose the best reply to it, namely L, 
with certainty (p = 1.00). But that contradicts Player I’s initial belief (p = .75), proving that 
the belief must therefore have been unjustified. 

The same general refutation obviously applies to any argument based on players’ 
subjective probabilities representing their beliefs about co-players’ strategies. Arguments 



based on the principle of indifference or of insufficient reason fall into this category. For 
example, in the Stag Hunt game (Fig. 1, left), it might be suggested that it is rational to 
choose R because, if we lack any reason to expect the co-player to choose one strategy or the 
other, we can at least observe that (8 + 7)/2 is better than (9 + 0)/2, hence it may seem 
rational to choose R. The hidden assumption here is that the co-player is equally likely to 
choose L or R, because the argument is otherwise incoherent. This is just a special case, with 
equal weights, of the general payoff-transformational approach already discussed. If the 
reasoning were indeed rationally justified, then the co-player would anticipate it by the 
transparency of reason and, being rational, would play a best reply to R, namely R. But this 
contradicts the assumption that this co-player is equally likely to choose L and R. Starting 
from an assumption that the co-player is equally likely to choose L or R, we have proved that 
the co-player is, in fact, certain to choose R, and we have a contradiction, showing the 
argument to be invalid. 
 
1.3. Rationale and hypotheses 

Team reasoning solves the payoff-dominance problem in theory, as we have shown.2 But 
do decision makers form collective preferences in practice, and do they engage in team 
reasoning? Neither preferences nor modes of reasoning can be observed directly, but 
predictions can be made about choices that would result from collective utility maximization 
and team reasoning, and that behavior can be observed directly. To examine this issue 
empirically, we performed two experiments, using games in which collective rationality and 
team reasoning predict different strategy choices from individual rationality and orthodox 
game theory. In both experiments, we pitted predictions of team reasoning directly against 
predictions of game theory. To this end, we focused on the class of games with unique Nash 
equilibria and distinct Pareto-dominant disequilibrial outcomes—outcomes that were not 
Nash equilibria but offered higher payoffs to both players. Such games clearly present a 
stronger test of collective rationality and team reasoning than games with payoff-dominant 
Nash equilibria, because all Nash equilibria are rational in classical game theory, whereas in 
our games team reasoning entails a deliberate departure from Nash equilibria and therefore 
from game theory (cf. Charness & Grosskopf, 2001; Charness & Rabin, 2002). 

Experiment 1 used games framed as lifelike vignettes designed to make the collectively 
and individually rational preferences maximally obvious and to prime team reasoning or 
individual rationality, and Experiment 2 used purely abstract games that enabled individual 
rationality and collective rationality (team reasoning) to be examined without the distracting 
influence of interpretive framing. In experimental games, there are advantages and 
disadvantages associated with meaningful interpretive frames versus purely abstract games 
(Loewenstein, 1999). We therefore decided to use both approaches to explore individual and 
collective rationality. The games in Experiment 1 were relatively complicated, having five 
strategy options per player, and we hypothesized that the contextual framing provided by the 
lifelike vignettes would encourage collective rationality in two of the games and individual 
rationality in two others. In Experiment 2, the games were simpler and were presented 
abstractly, without any interpretive framing, and each game had three strategy options per 
player. We hypothesized that all of the games in Experiment 2 would elicit collective 
rationality and team reasoning on account of their structural properties alone. In both 
experiments, each game had a unique Nash equilibrium and an outcome, distinct from the 
equilibrium, that yielded better payoffs to both players, and participants were motivated with 
significant financial incentives linked to the payoffs. 
 



2. Experiment 1 
 
2.1. Participants 

The 81 participants who served as decision makers in this experiment included 36 men 
and 45 women, mostly undergraduate students, aged 16 to 45 (M = 20.48, SD = 4.40), 
recruited via an online experimental participant panel on the web pages of the University of 
Leicester. They volunteered to take part in what was described to them as an experiment on 
decision making, and each participant earned between £4.00 ($7.28) and £13.00 ($23.66), M 
= £9.48 ($17.25), SD = 1.89 ($3.44) according to the payoffs in a single game selected 
randomly from among those used in the experiment. This method of payment is a version of 
the random lottery incentive system, which has been found to have various desirable 
properties for motivating participants (Cubitt, Starmer, & Sugden, 1998). 
 
2.2. Materials 

We hypothesized that collective preferences would be primed by vignettes describing 
decisions in which the payoffs contribute to a respected public good, provided that the 
individuals play their parts in the collectively rational outcome. We call these team-reasoning 
vignettes. Accordingly, the players indicated their choices in the two lifelike team-reasoning 
vignettes shown in Fig. 3, both of which were specifically designed to prime collective 
preferences. “Fund-raising” and “GM site” are both symmetric 5 × 5 games, and each has a 
singular Nash equilibrium where both players choose D and a collectively rational outcome 
where both choose C.  
 
Fund-raising 
You and other students collect funds for 
charity. In the first hour, you and your 
best friend each raise some money. 
Here is a list of the possible options: 
 

 You raise Your friend 
raises 

Option A £1 £7 
Option B £3 £3 
Option C £5 £6 
Option D £6 £4 
Option E £4 £1 

 
Which option do you prefer? 
A   B   C   D   E   (circle one) 
 
What do you expect the other person to 
choose? 
A   B   C   D   E   (circle one) 
 

GM site 
You are involved in a group of people 
who are against a proposed test site for 
genetically modified crops. You and 
another group member spend half an 
hour in the local town collecting money 
for publicity opposing the new test site. 
Here is a list of the possible options: 
 

 You 
collect 

Other person 
collects 

Option A £1 £7 
Option B £4 £5 
Option C £4 £6 
Option D £6 £3 
Option E £4 £0 

 
Which option do you prefer? 
A   B   C   D   E   (circle one) 
 
What do you expect the other person to 
choose? 
A   B   C   D   E   (circle one) 

 
Fig. 3. Decision vignettes designed to prime collective preferences (team-reasoning 
vignettes), with Option A maximizing altruism, B equality-seeking, C collective rationality, D 
individual rationality, and E competition. 



 
As a benchmark for comparison, we also solicited decisions from the players in two 

vignettes, shown in Fig. 4, designed to prime individualistic preferences, owing to the fact 
that payoffs provide culturally acceptable benefits to individuals rather than public goods. In 
these cases, we hypothesized that individualistic preferences would be primed by frames 
involving competitive gambling and recreational games with individual payoffs to the 
winners. “Prize draw” and “Poker” are both symmetric 5 × 5 games, each with a singular 
Nash equilibrium where both players choose D and a collectively rational outcome where 
both choose C.  
 
Prize draw 
You and your next-door neighbour enter 
a prize draw at a school fete. Here is a 
list of the possible options: 
 

 You win Neighbour wins
Option A £3 £7 
Option B £4 £4 
Option C £5 £6 
Option D £6 £2 
Option E £5 £0 

 
Which option do you prefer? 
A   B   C   D   E   (circle one) 
 
What do you expect the other person to 
choose? 
A   B   C   D   E   (circle one) 
 

Poker 
You and a classmate play a session of 
poker on the internet. Here is a list of the 
possible options: 
 

 You win Classmate 
wins 

Option A £1 £6 
Option B £2 £2 
Option C £4 £5 
Option D £5 £2 
Option E £4 £0 

 
Which option do you prefer? 
A   B   C   D   E   (circle one) 
 
What do you expect the other person to 
choose? 
A   B   C   D   E   (circle one) 

 
Fig. 4. Decision vignettes designed to prime individual rationality. Option A maximizes 
altruism, B equality-seeking, C collective rationality, D individual rationality, and E 
competition  
 

In each vignette, players chose from a list of five options for assigning substantial 
monetary payoffs to self and an unidentified co-player, and they also indicated which options 
they expected their co-player to choose. The five options invariably represented altruism 
(maximizing co-player’s payoff), equality-seeking (minimizing absolute difference between 
own and co-player’s payoff), collective rationality (maximizing joint payoff), individual 
rationality (maximizing own payoff), and competition (maximizing own minus co-player’s 
payoff). Four of these are standard social value orientations (Van Lange, 1999), and 
collective rationality, as we interpret it, is an orientation that cannot be formulated within the 
standard integrative model, as we have shown above.  

The choice options were mutually exclusive in the sense that each maximized one and 
only one of the five orientations. We randomized the sequential orders in which the vignettes 
were presented to the players to control for order effects, and we systematically rotated the 
choice options within the vignettes to control for positioning and labeling effects. Players 
therefore responded to versions of the vignettes shown in Figs 2 and 3 in which the choice 
options appeared in different orders. 
 



2.3. Procedure 
Players were tested in groups of approximately 30. They were given written instructions, 

which the experimenters also summarized orally, explaining that they had each been “paired 
with another participant in this room” who would not be identified to them but was choosing 
from the same vignettes as themselves, and that “after each scenario you will be asked to 
indicate which of the outcomes you prefer. Please answer by circling the letter corresponding 
to your preferred outcome.” 

The players were told that the verbal contents of the vignettes were merely to help them 
understand the payoffs and that the numbers in the vignettes represented pounds sterling for 
self and other, and it was explained to them that each person’s payoff on any particular 
vignette would be the sum of the self-assigned and other-assigned amounts determined by 
both of their choices. For example, in “Prize draw” (Fig. 4), an individual who chose A (£3 to 
self and £7 to other) while the other individual chose B (£4 to self and £4 to other) would 
receive a total of £7 (£3 + £4), and the other individual would receive a total of £11 (£4 + 
£7). 

The vignettes were thus framed as decomposed games (Pruitt, 1967), in which 
individually and collectively rational strategies could be identified especially easily, the 
individually rational strategy invariably being the one with the greatest self-assigned payoff, 
and the collectively rational strategy the one with the greatest sum of self-assigned and other-
assigned payoffs.  

Finally, players were told: “At the end of the experiment, one of the scenarios will be 
chosen at random by the computer, and both you and your partner will be paid according to 
the options that you both preferred for that scenario. So your choices will affect the amount 
of money that you will take away with you today.” The monetary payoffs represented the 
actual payoffs of the games, and we assumed that these would determine the players’ 
decisions. 

The players then studied the vignettes and indicated their choices. At the bottom of each 
vignette, they were asked to circle A, B, C, D, or E in response to the following two 
questions: “Which option do you prefer?” and “What do you expect the other person to 
choose?” 
 
2.4. Results 

Full results from the team-reasoning and individual rationality vignettes are given in 
Table 1. In the team-reasoning “Fund-raising” vignette, the distribution of choices across the 
five options deviates significantly from chance: χ2(4, N = 81) = 110.67, p < .001, effect size w 
= 1.17 (large). A substantial majority of players (59.26%) chose the collectively rational 
option (C), and most of the rest (34.57%) chose the individually rational option associated 
with the unique Nash equilibrium (D). Ignoring five players who chose other options, the 
proportion who chose the collectively rational option was significantly greater than the 
proportion who chose the individually rational option: χ2(1, N = 76) = 5.26, p = .02, w = 0.26 
(small). As predicted by theories of team reasoning, a large majority (77.08%) of the players 
who chose the collective option expected their co-players to choose it also. 
 



Table 1 
Experiment 1 results (percentages), for lifelike vignettes designed to prime collective 
rationality (Fund-raising and GM site) and individual rationality (Prize draw and Poker) 
 Options chosen 
Vignette A B C D E 
Fund-raising 0.00 4.94 59.26 34.57 1.23
GM site 2.47 11.11 49.36 35.80 1.23
Prize draw 1.23 16.05 23.46 54.32 4.94
Poker 1.23 6.17 22.22 59.26 11.11
Note. A = altruism, B = equality-seeking, C = collective rationality, D = individual 
rationality, E = competition. 
 

In the team-reasoning “GM site” vignette, the percentages of players who chose A, B, C, 
D, and E deviated from chance: χ2(4, N = 81) = 74.99, p < .001, w = 0.96 (large). Once again, 
a majority (49.36%) chose the collectively rational option (C), and most of the rest (35.80%) 
chose the individually rational option associated with the unique Nash equilibrium (D). The 
proportion who chose the collectively rational option was larger than the proportion who 
chose the individually rational option, although not significantly so: χ2(1, N = 69) = 1.75, p = 
.19, w = 0.16 (small). Once again, a large majority (77.50%) of the players who chose the 
collective option expected their co-players to choose it. 

Of the two vignettes designed to encourage individual rationality (Fig. 4), “Prize draw” 
elicited 54.32% individually rational and 23.46% collectively rational choices, and “Poker” 
59.26% individually rational and 22.22% collectively rational choices. The majority 
preferences in these vignettes were individually rational, in line with the predictions of game 
theory. For “Prize Draw”, preferences across the five options differed significantly, χ2(4, N = 
81) = 72.27, p < .001, w = 0.94 (large), and comparing just the collectively and individually 
rational options, the difference remains highly significant: χ2(1, N = 63) = 9.92, p = .002, w = 
0.37 (medium). Similarly for “Poker”, preferences across the five options differed 
significantly, χ2(4, N = 81) = 87.83, p < .001, w = 1.04 (large), and preferences for the 
collectively and individually rational options also differed significantly: χ2(1, N = 66) = 
13.64, p < .001, w = 0.46 (medium). 

The results of this experiment suggest that the interpretive framing of the games had a 
moderately powerful effect on the outcome preferences and mode of reasoning adopted by 
the players, with predominantly collective rationality and team reasoning only in the 
vignettes designed to prime it, although each of the four games had a Pareto-dominant 
outcome—one that yielded higher payoffs to both players than the Nash equilibrium. 
However, it is impossible to judge how much influence interpretive framing had on collective 
rationality and team reasoning in the team-reasoning vignettes. Experiment 2 was therefore 
performed in order to seek evidence for team reasoning in abstract games without interpretive 
framing.  
 
3. Experiment 2 
 
3.1. Participants 

The participants who served as decision makers in this experiment were the same 81 who 
served in Experiment 1: 36 men and 45 women aged 16 to 45 (M = 20.48, SD = 4.40). 
Experiment 2 followed immediately after Experiment 1, without any debriefing until both 
experiments were completed. As in Experiment 1, we randomized the sequential orders in 
which the games were presented to the players to control for order effects, and we rotated the 
strategies within the games to control for positioning and labeling effects. Once again, 



participants were told that one of the games would be chosen randomly for cash payment, and 
each participant earned between £5.00 ($9.10) and £9.00 ($16.38), M = £6.54 ($11.90), SD = 
£1.18 ($2.15), according to their payoffs in the randomly selected game. 

 
3.2. Materials 

The players made one-off decisions in five symmetric 3 × 3 games presented abstractly, 
without interpretive framing. Fig. 5 shows all five game matrices. Each of these games has a 
unique Nash equilibrium and a distinct, collectively rational, Pareto-dominant outcome. We 
hypothesized that this class of games would be likely to elicit team reasoning in spite of 
having unique game-theoretic solutions that differed from the team-reasoning outcomes. 
 

  II 

  C D E 

C 8, 8 5, 9 5, 5 

D 9, 5 7, 7 5, 9  I 

E 5, 5 9, 5 6, 6  

  II 

  C D E 

C 8, 8 7, 7 5, 9

D 7, 7 6, 6 6, 5 I 

E 9, 5 5, 6 7, 7 

  II 

  C D E 

C 9, 9 7, 10 7, 5 

D 10, 7 7, 7 6, 9  I 

E 5, 7 9, 6 8, 8  
        Game 1          Game 2              Game 3 

   

  II 

  C D E 

C 8, 8 9, 6 5, 9 

D 6, 9 7, 7 5, 5  I 

E 9, 5 5, 5 6, 6  

  II 

  C D E 

C 8, 8 5, 5 5, 9

D 5, 5 6, 6 6, 7 I 

E 9, 5 7, 6 7, 7 

 

         Game 4          Game 5  
 
Fig. 5. The five games used in Experiment 2, in normal (strategic) form, with singular Nash 
equilibria at (E, E), collectively rational outcomes at (C, C), and payoffs in pounds sterling. 
 

To see why the (C, C) outcome in each of the games in Fig. 5 is collectively rational, note 
that this outcome is Pareto optimal in the sense that no outcome yields higher payoffs to both 
players—in any outcome in which one player does better, the co-player does worse. A 
consequence of this is that the (C, C) outcome maximizes the joint payoff (sum of payoffs) of 
the pair of players. But (C, C) is not individually rational in any of these games, because it is 
not a Nash equilibrium. In Game 1, for example, C is not a best reply to C, because if Player I 
chooses C, then Player II receives a higher payoff by choosing D than by choosing C—Player 
II’s payoff is 9 following a D choice and 8 following a C choice. For this reason, (C, C) is not 
a Nash equilibrium, and the C strategy is not a rational choice for either player, because 
players are not choosing best replies to each other’s strategies and are therefore not 
maximizing their individual utilities. The only Nash equilibria in the games in Fig. 5 are at 
(E, E). In Game 1, for example, if Player I chooses E, then Player II’s best reply is E, and 
conversely if Player II chooses E, then Player I’s best reply is E. Each of these games has a 
unique Nash equilibrium at (E, E) that is the rational outcome according to orthodox game 
theory, but this uniquely rational solution is Pareto-dominated by the outcome at (C, C), 
where both players receive higher payoffs.3



The games were presented to the players verbally rather than in matrix form. For Game 1, 
for example, the description was: “You choose C or D or E. The other person chooses C or D 
or E. Here are the possible outcomes: You choose C; the other person chooses C. You get £8, 
other gets £8. You choose C; the other person chooses D. You get £5, other gets £9. . . .”, and 
so on. The singular Nash equilibrium of every game in Fig. 5 is (E, E) and the collectively 
rational outcome is (C, C). Payoffs represent pounds sterling. 
 
3.3. Procedure 

The participants were presented with the five abstract games, on separate pages, preceded 
by the following written instructions, which were summarized orally by the experimenters: 

 
You are now going to make [several] decisions, from which you can earn more money. There are no 
scenarios with these—they are purely cash decisions. You and the other person will be presented with the 
identical problems. To work out the likely consequences of any decision, you will have to take into account 
what the other person is likely to choose. Once again, one of these problems will chosen at random by 
computer, and you and the other person will receive the amounts shown, in cash, depending on both your 
choices for that problem. 
 
The players indicated their choices by circling A, B, or C on their answer sheets. For each 

game, they also responded to the following question: “What do you expect the other person to 
choose: Circle A or B or C.” 
 
3.4. Results 

Results from the abstract 3 × 3 games are shown in Table 2. The percentages of players 
who chose collectively and individually rational strategies are displayed graphically in Fig. 6. 
In every game in which team reasoning was pitted directly against individual rationality, an 
absolute majority of players chose the team-reasoning strategy, and a smaller proportion 
chose the individually rational (Nash equilibrium) strategy. Restricting attention to the 
collectively rational and individually rational strategies, in Games 1, 3, and 4, these 
differences are significant by chi-square tests: Game 1, χ2(1, N = 55) = 17.47, p < .001, effect 
size w = 0.56 (large); Game 3, χ2(1, N = 49) = 34.31, p < .001, w = 0.84 (large); Game 4, χ2(1, 
N = 76) = 53.90, p < .001, w = 0.84 (large). These findings provide strong evidence that team 
reasoning can influence decision making in games of this type. In Game 2 the difference is 
marginally significant: χ2(1, N = 78) = 2.51, p = .14, w = 0.18 (small); and in Game 5, it is 
nonsignificant: χ2(1, N = 81) = 0.61, p = .51, w = 0.09. 

 
Table 2 
Experiment 2 results (percentages) for abstract 3 × 3 games, displayed with C = collectively 
rational strategy and E = individually rational strategy (Strategy D is neither collectively nor 
individually rational) 
 Strategy chosen   
Game C D E χ2(2, N = 81) p 

1 53.09 32.10 14.81 17.85 < .001
2 56.79 3.70 39.51 35.63 < .001
3 55.55 39.51 4.94 32.52 < .001
4 86.42 6.17 7.41 102.74 < .001
5 54.32 0.00 45.68 41.41 < .001
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Fig. 6. Collective versus individual rationality: Percentages of collectively rational (dark 
bars) and individually rational (light bars) strategy choices in five abstract 3 × 3 games. 
 

Players who chose team-reasoning strategies in the abstract 3 × 3 games generally 
predicted that their co-players would choose them also. Expectations of team-reasoning co-
player choices by team-reasoning players in Games 1–5 were 88.37%, 78.26%, 75.56%, 
81.16%, and 79.55% respectively. This, and the similar finding in Experiment 1, is consistent 
with the theoretical prediction (Bacharach, 1999, 2006; Sugden, 1993, 1995, 2005) that 
players who engage in team reasoning need to be confident that their co-players will do the 
same. 

 
4. Discussion 

In both experiments, we presented players with games in each of which a collectively 
rational strategy was available in addition to an individually rational strategy yielding smaller 
payoffs, and in both experiments, substantial majorities of players chose the collectively 
rational strategies. These findings are consistent with the hypothesis that team reasoning 
tends to influence decision making in strategic interactions of certain types. 

In Experiment 1, four symmetric 5 × 5 games were decomposed and framed as lifelike 
vignettes to make the collectively and individually rational strategies obvious to the players. 
Two of the vignettes, the team-reasoning vignettes designed to prime collective rationality, 
described decisions in which individuals who played their parts in the collectively rational 
outcome contributed to a respected public good, although the actual payoffs were in cash and 
were paid to individual players, who never discovered who their co-players were. Each of 
these games had a unique Nash equilibrium, corresponding to the individually rational 
options, and a disequilibrial but collectively rational outcome that Pareto-dominated it. In 
these two vignettes, most of the players preferred the collectively rational to the individually 
rational options, and in two vignettes designed to prime individual rationality, they preferred 



the individually rational options. These results suggest that team reasoning can occur in 
games of this type, at least when interpretive priming encourages it. 

In Experiment 2, we examined strategy choices in five symmetric 3 × 3 games, each with 
a unique Nash equilibrium once again strictly Pareto-dominated by a disequilibrial outcome. 
These games were presented abstractly, without any interpretive framing, but they were 
simpler than the games used in Experiment 1, and we hypothesized that the structural 
property that they shared in common would be sufficient to cause players to choose the 
collectively rational strategies. In all five games, a majority of players did indeed choose the 
Pareto-dominant, collectively rational strategies in preference to the individually rational 
strategies mandated by Nash equilibria. These results show clearly that team reasoning 
predicted strategy choices more powerfully than game theory. 

The collective rationality effect was large and significant in Games 1, 3, and 4, and 
relatively smaller and nonsignificant in Games 2 and 5, and these differences are not difficult 
to understand with the benefit of hindsight. In Games 1 and 4, the effect was probably 
strengthened by the fact that the collective payoff was greater by a margin of £4 in the 
collectively rational outcome (C, C) than in the Nash equilibrium (E, E), whereas in the other 
games it was greater by a margin of only £2. In Game 3, the effect may have been 
strengthened by the risk-dominance of the collectively rational outcome over the Nash 
equilibrium—only the individually rational C strategy carried the risk of the lowest possible 
payoff (£5). In Games 2 and 5, on the other hand, Nash equilibria risk-dominated collectively 
rational outcomes, and that may have inhibited the choice of collectively rational strategies in 
those games. Previous research (Cooper, DeJong, Forsythe, & Ross, 1990; Van Huyck, 
Battalio, & Beil, 1990) has shown that risk dominance has some influence on strategy choices 
in experimental coordination games with multiple Nash equilibria, and our findings extend 
this to games with unique Nash equilibria. 

Players who chose collectively rational strategies generally predicted that their co-players 
would choose them also. In the lifelike vignettes of Experiment 1, almost 80 per cent of the 
players who chose collective options expected their co-players to choose them also, and in 
the abstract 3 × 3 games of Experiment 2, the corresponding expectations were over 75 per 
cent in all games. These findings are consistent with the theoretical assumption (Bacharach, 
1999, 2006; Sugden, 1993, 1995, 2005) that team reasoning tends to be associated with 
confidence that co-players will do the same. 

We doubt that there was any significant carry-over of collective rationality from 
Experiment 1 to Experiment 2, partly because the tasks were so very different from the 
participants’ point of view, and also because two of the four vignettes in Experiment 1 were 
specifically (and successfully) designed to encourage individualistic rationality. However, 
irrespective of any carry-over effects, the departures from Nash equilibrium in Experiment 2 
are particularly striking, because they do not rely on any interpretive priming, and they are 
sharply at odds with orthodox game theory. 

In all of the games that we studied, pairs of players who chose team-reasoning strategies 
received higher payoffs than pairs who chose Nash equilibria, but this does not imply that 
they were motivated by individual payoff maximization, because collectively rational choices 
were out of equilibrium in all of our lifelike and abstract games. This means that, in all cases, 
a player motivated by strictly individualistic payoff maximization could have obtained a 
higher payoff by choosing differently. In Fig. 5, for example, pairs of players who both chose 
C were not making best replies to each others’ strategies. To maximize individual playoffs 
against a player who chooses C, a player should choose D in Game 1, E in Game 2, D in 
Game 3, E in Game 4, and E in Game 5. Bearing in mind the finding that the vast majority of 
players who chose C expected their co-players to choose C, these players, at least, must have 
deliberately rejected individual payoff maximization in favor of something else. That 



“something else” appears, in the light of our findings, to have been collective payoff 
maximization, in other words, team reasoning. 

Although social psychologists have up to now largely ignored team reasoning, there is a 
considerable body of psychological research that is potentially relevant to it. Social 
psychology’s mysterious blind spot for game theory is exemplified by the omission of any 
direct mention of team reasoning from Brewer and Chen’s (2007) otherwise comprehensive 
recent review of the conceptual issues underlying individualism and collectivism. Game 
theory and social psychology, although they are evidently not on speaking terms at present, 
clearly have shared interests in issues related to team reasoning. For example, research based 
on public goods games and other types of social dilemmas has shown that mutually beneficial 
cooperation and “we-thinking” can be dramatically enhanced by raising players’ sense of 
group identity (Brewer & Kramer, 1986; Dawes, van de Kragt, & Orbell, 1988); and De 
Cremer and Van Vugt (1999) have reported evidence from three experiments suggesting that 
such social identity effects may be due not to any increase in interpersonal trust but to an 
increase in the value of collective goods. Findings such as these may help to explain how 
players come to switch from individual to collective payoff maximization and team 
reasoning. 

Each of our games had a single Nash equilibrium and a collectively rational outcome that 
was out of equilibrium and was therefore strictly irrational according to orthodox 
(individualistic) game theory. The same applies to social dilemmas, including the well-known 
Prisoner’s Dilemma game (Fig. 2, left), in which the unique Nash equilibrium mandates joint 
defection, but both players are better off if both cooperate. Rampant cooperation typically 
occurs in experimental Prisoner’s Dilemma games (Colman 1995, chap. 7; Sally, 1992) and 
in multi-player social dilemmas, which also have unique Nash equilibria and distinct 
outcomes that are collectively rational (Colman 1995, chap. 9; Dawes, van de Kragt, & 
Orbell, 1988; Ledyard, 1995), and team reasoning provides a plausible explanation for these 
findings. Our findings suggest that team reasoning has implications that go far beyond social 
dilemmas and coordination games. Coordination games are games with two (or more) Nash 
equilibria in which the problem confronting the payers is one of coordinating their strategy 
choices on the same equilibrium. In these games, orthodox game theory is indeterminate, 
regarding any equilibrium as a rational outcome and providing no criterion for choosing 
between them. In social dilemmas, and in the games used in our experiments, team reasoning 
inclines players to choose outcomes that are not Nash equilibria and are therefore not 
regarded as rational solutions in orthodox game theory. 

The results of our experiments show that collective rationality motivates decision making 
in strategic interactions with certain specifiable structural properties, and we hope that these 
findings, close as they are to areas of psychological research, will help to break the ice in the 
standoff between game theory and its close neighbor, social psychology. A proper 
understanding of social behavior needs to take account of collective rationality and team 
reasoning, and team reasoning needs to be incorporated into any game theory that purports to 
explain naturally occurring interactive decisions, although such a radical reorientation would 
launch game theory into largely uncharted waters. This may be necessary, because everyday 
experience suggests that it is not uncommon for people to set aside their individual self-
interests and to make decisions in what they judge to be best interests of their families, or the 
companies that employ them, or their departments or universities, or the religious, ethnic, or 
national groups with which they identify themselves, sometimes fervently, and a 
comprehensive understanding of strategic interaction needs to recognize and understand this 
mode of decision making. 
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Footnotes 

1 This intuitive simplification suffices for the present discussion, but Harsanyi and 
Selten’s (1988) formal definition is more complicated. If (L, L) and (R, R) are both Nash 
equilibria, and we use the symbol a to label the payoff for choosing L against a co-player’s 
choice of L, b for the payoff for L against R, c for the payoff for R against L, and d for the 
payoff for R against R, then (L, L) risk-dominates (R, R) iff (a – c)2 > (d – b)2, and (R, R) risk-
dominates (L, L) if the reverse inequality holds. 

2 The only other solutions that do not involve changing the rules of the game, as far as we 
are aware, are individual team member rationality (Janssen, 2001), which is very close to 
team reasoning, and Stackelberg reasoning (Colman & Bacharach, 1997; Colman & Stirk, 
1998). Stackelberg reasoning assumes that players use evidential reasoning, maximizing 
conditional expected utility rather than pure expected utility as in classical decision theory.  

3 An anonymous referee commented that although the E strategies form Nash equilibria, 
they seem “woefully lacking in common sense”. We interpret this as empirical evidence of 
collective rationality and team reasoning on the part of the referee, additional to our 
experimental data. 
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