posted on 2014-10-22, 10:32authored byAndrés G. Algarra, Warren B. Cross, David L. Davies, Qudsia Khamker, Stuart A. Macgregor, Claire L. McMullin, Kuldip Singh
Detailed experimental and computational studies are reported on the mechanism of the coupling of alkynes with 3-arylpyrazoles at [Rh(MeCN)[subscript 3]Cp*][PF[subscript 6]][subscript 2] and [RuCl[subscript 2](p-cymene)][subscript 2] catalysts. Density functional theory (DFT) calculations indicate a mechanism involving sequential N−H and C−H bond activation, HOAc/alkyne exchange, migratory insertion, and C−N reductive coupling. For rhodium, C−H bond activation is a two-step process comprising κ²−κ¹ displacement of acetate to give an agostic intermediate which then undergoes C−H bond cleavage via proton transfer to acetate. For the reaction of 3-phenyl-5-methylpyrazole with 4-octyne k[subscript H]/k[subscript D] = 2.7 ± 0.5 indicating that C−H bond cleavage is rate limiting in this case. However, H/D exchange studies, both with and without added alkyne, suggest that the migratory insertion transition state is close in energy to that for C−H bond cleavage. In order to model this result correctly, the DFT calculations must employ the full experimental system and include a treatment of dispersion effects. A significantly higher overall barrier to catalysis is computed at {Ru(p-cymene)} for which the rate-limiting process remains C−H activation. However, this is now a one-step process corresponding to the κ²−κ¹ displacement of acetate and so is still consistent with the lack of a significant experimental isotope effect (k[subscript H]/k[subscript D] = 1.1 ± 0.2).
History
Citation
Journal of Organic Chemistry, 2014, 79 (5), pp. 1954-1970
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Chemistry
The file associated with this record is embargoed until 12 months after the date of publication. The final published version may be available through the links above.