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 Summary.–Using a self-administered questionnaire, 227 respondents rated service elements associated with 
a restaurant, retail store, or public transport company on several 5-point and 7-point rating scales. Least-squares 
regression showed that linear equations for estimating 7-point from 5-point and 5-point from 7-point ratings 
explained over 85% of the variance and fitted the data almost as well as higher-order polynomials and power 
functions. In a cross-validation on a new data set, the proportion of variance explained fell to about 76%. 
Functionally inverse versions of the derived linear equations were calculated for the convenience of researchers 
and psychometricians. 
 
 
 Circumstances sometimes occur in which researchers or applied psychologists have to 
compare scores derived from rating scales with different numbers of response categories. In 
longitudinal research designs in psychology, education, marketing, and many areas of social 
research, for example, a 5-point scale that has been used for some time may be replaced by a 
new 7-point scale, or vice versa, and researchers may wish to establish a basis for continuity 
in order to enable comparisons to be made between the old and the new data. In other 
circumstances, researchers may wish to compare newly collected 5-point data with 7-point 
data already published in a journal article or report, or to compare different published sets of 
5-point and 7-point data. 
 A number of studies (reviewed by Cox, 1980) have been conducted to examine the effects 
of different numbers of response categories on the reliability and validity of rating scales and 
the response patterns generated by them (e.g., Cicchetti, Showalter, & Tyrer, 1985; Matell & 
Jacoby, 1971; Schutz & Rucker, 1975). In contemporary psychometric practice, the majority 
of rating scales, Likert scales, and other attitude and opinion measures contain either five or 
seven response categories (Bearden, Netmeyer, & Mobley, 1993; Shaw & Wright, 1967). 
Symonds (1924) was the first to suggest that reliability is optimized with seven response 
categories, and other early investigations tended to agree (see Ghiselli, 1955, for a 
comprehensive review of early research). In an influential review article, Miller (1956) 



argued that the human mind has a span of absolute judgment that can distinguish about seven 
distinct categories, a span of immediate memory for about seven items, and a span of 
attention that can encompass about six objects at a time, which suggested that any increase in 
number of response categories beyond six or seven might be futile. Odd numbers of response 
categories have generally been preferred to even numbers because they allow the middle 
category to be interpreted as a neutral point, and more recent research (e.g. Green & Rao, 
1970; Neumann & Neumann, 1981) has tended to reinforce the general preference for 5-point 
or 7-point scales. 
 We shall confine our attention to the comparability, equivalence, and estimation–in both 
directions–between 5-point and 7-point scales, although the mathematical and empirical 
methods may be generalized to rating scales that differ arbitrarily in numbers of response 
categories. We shall first discuss naive mathematical solutions, and we shall explain why 
these solutions are fundamentally untrustworthy. We shall then outline empirical solutions, 
based on the ratings given by respondents in a large-scale survey of attitudes towards 
services. Finally, we shall present some recommendations to researchers and practitioners 
who find themselves confronted with these problems. 
 

Naive Mathematical Solutions 
 The easiest and most obvious method of estimation, and consequently the one that is 
probably most widely used, is a simple proportional transformation. This approach involves 
multiplying each 5-point score by the proportion 7/5 to scale it up to an equivalent 7-point 
score, or multiplying each 7-point score by 5/7 to scale it down to an equivalent 5-point 
score. This method of solution can be visualized by imagining an elastic ruler with five 
equidistant numerals is stretched evenly to fit alongside a longer ruler with seven numerals, 
or one with seven numerals compressed to fit alongside a ruler with five. 

 An analogous mathematical solution entails transforming the original 5-point or 7-
point scores to standard (z) scores) and then treating them as fully equivalent and 
comparable. Transformation of raw scores to standard scores is achieved through the relation 
z = (x – M)/s, where x is the raw score, M is the mean of the raw scores, and s is the standard 
deviation of the raw scores. The standard deviation is the square root of the variance s2, an 
unbiased estimate of which is s2 = Σ[(xi – M)]/(N – 1), where N is the number of raw scores xi 
and the summation is over i from i = 1 to i = N. Standard scores are widely used for 
comparing raw scores from different distributions, because they are dimensionless quantities 
with mean and standard deviation equal to 0 and 1 respectively, yet they retain the original 
shape or mathematical form of the raw score distributions from which they are derived. 
Standardization is an obvious and natural approach that has proved useful for evaluating 
empirical data (Rosenthal & Rosnow, 1991), designing experiments (Cohen, 1988), and 
integrating results from many studies (Hedges & Olkin, 1985), but it has certain drawbacks 
for comparing data from rating scales of unequal lengths. In particular, it can be used for 
converting scores only when the mean and standard deviations for the scales are known, and 
this information is not always available in published and unpublished data that researchers 
may which to convert. 
 Although elementary mathematical solutions may be popular in practice, they are likely 
to yield inaccurate equivalences, because they contain hidden assumptions about human 
information processing. A purely mathematical approach provides no basis for the choice of 
suitable parameters for the transformation equation; these can be established only through 
empirical research. The solution via standardization also rests on implicit assumptions about 
psychological equivalences between scales of different lengths. How people respond to rating 
scales with unequal numbers of response categories is a quintessentially psychological rather 



than a mathematical question, and the aim of this study is to derive the best solution by 
analyzing data from empirical research. 
 

Empirical Study 
 We obtained responses on a variety of 5-point and 7-point rating scales from 227 
respondents throughout England and Wales, 77 men and 150 women aged 20 to “over 60” (in 
the over-60 range, exact ages were not recorded). The respondents were recruited by a form 
of snowball sampling with the help of students who volunteered to participate as respondents 
and to recruit additional respondents in return for course credits. The sample thus consisted 
of undergraduate students and their friends (some of whom were also undergraduate students) 
and relatives. Through a self-administered questionnaire, the respondents rated a retail store, 
restaurant, or public transport company with which they had recent experience. These service 
categories were chosen on the assumption that all respondents would have used a store, 
restaurant, or public transport in the recent past, and this turned out to be the case. 
 The respondents first rated overall service quality (“How would you rate the overall 
quality of the [store, restaurant, or public transport company]”) on a 7-point scale, and they 
then rated the quality of a key service element associated with that service provider on 5-
point and 7-point scales. Different service elements were rated for different service 
categories: helpfulness of staff (store), competence of staff (restaurant), and availability of 
information (public transport). The rating scales were presented with the two extremes of the 
five or seven response categories anchored by either bipolar adjective pairs (e.g., in a scale to 
rate the helpfulness of staff, the anchors were not at all helpful at one end of the scale and 
extremely helpful at the other) or by comparisons with the level of service expected (e.g., in 
the scale relating helpfulness of staff to expectations, the anchors were considerably better 
than expected and considerably worse than expected. On two-thirds of the rating scales the 
response categories were displayed as a series of numerals from 1 to 5 or 7, and the 
respondents were asked to circle or tick an appropriate number. On all other scales the 
response categories were simply five or seven open bracket pairs, and the respondents were 
asked to place a tick in the appropriate space. Our aim was to include some commonly used 
presentation formats and a variety of subject matter with a reasonably representative sample 
of respondents in terms of sex, age, and geographical distribution. 
 

Results and Analysis 
 In our analysis of the results, we made comparisons between responses to 5-point and 7-
point scales that differed only in number of response categories. The correlation between the 
5-point and 7-point scales was high (r = .921, p < .001). The ratings were analyzed by least-
squares regression to determine the best fit of linear, quadratic, third-order polynomial, and 
power function equations, which are the simplest equations that might reasonably be 
expected to explain the relationship between the 5-point and 7-point ratings. The results are 
summarized in Table 1. The R2 values for the simple proportional and z transformations are 
included for comparison. 
 



Table 1. Simple Proportional Transformation and Least-Squares Regression: Coefficients of 
Determination for Different Methods (Cross-Validation Data in Parentheses), N = 227 
 
 Type of Equation Used for Fitting Data 

Dependent 
Variable 

Simple 
Proportion 

z Score Linear Quadratic 3rd-Order 
Polynomial 

Power 
Function 

7-point ratings .841 (.770) .848 (.773) .848 (.775) .848 (.775) .851 (.784) .848 (.774) 

5-point ratings .824 (.775) .848 (.773) .848 (.769) .848 (.771) .849 (.775) .846 (.768) 

 
 The following equations represent the least-squares best fitting linear, quadratic, third-
order polynomial, and power functions. In these equations, x represents the observed 5-point 
or 7-point ratings, y7 and y5 represent the estimated 7-point and 5-point ratings respectively, 
and the numerical estimates of the constants a, b, etc. are derived from the regression analysis 
and are shown together with the limits of their standard errors of estimate (the probability 
that an estimated score will fall within one standard error of its predicted value is 
approximately 68%). 
 
Linear Equations (y = ax + b): 
 
  y7 = (1.35 ± .04)x + (.01 ± .13), [1] 
 y5 = (.63 ± .18)x + (.50 ± .08). [2] 
 
The coefficient of determination for Equation 1 is R2 = .848, and for Equation 2 it is also R2 = 
.848; in each case 84.8% of the variance in ratings is accounted for by the linear equation. 
 
Quadratic Equations (y = ax2 + bx + c): 
 
  y7 = (–.02 ± .03)x2 + (1.44 ± .21)x – (.13 ± .29), [3] 
 y5 = (–.00 ± .01)x2 + (.66 ± .09)x + (.45 ± .17). [4] 
 
The coefficient of determination for Equation 3 is R2 = .848, and for Equation 4 it is R2 = 
.848, indicating that the least-squares fit is no better than for the linear equations. 
 
Third-Order Polynomial (y = ax3 + bx2 + cx + d): 
 
 y7 = (–.06 ± .03)x3 + (.53 ± .26)x2 – (.04 ± .74)x + (1.00 ± .61),   [5] 
 y5 = (–.01 ± .01)x3 – (.11 ± .08)x2 + (.26 ± .30)x + (.83 ± .32).   [6] 
 
The coefficient of determination for Equation 5 is R2 = .851 and for Equation 6 it is R2 = 
.849. The slight increase over the coefficients for Equations 1 to 4 is inconsequential: higher-
order polynomials necessarily provide better least-squares fits to virtually all data sets than 
lower-order polynomials, because they contain more terms and parameters. 
 
Power Function (y = axb): 
 y7 = (1.34 ± .07)x(1.00 ± .04), [7] 



 y5 = (.99 ± .05)x(.82 ± .30). [8] 
 
The coefficient of determination for Equation 7 is R2 = .848, and for Equation 8 it is R2 = 
.846. These figures show that the power function equation accounts for about 85% of the 
variance in estimating 5-point ratings from 7-point ratings, and vice versa. 
 The regression equations (1) to (8) together with the simple proportional and z score 
transformations were cross-validated for goodness of fit with a new data set. These data were 
from 224 of the participants in the original study responding to questions about a different 
service element (promptness of service). The R2 values for the goodness of fit to this new set 
of cross-validation data are presented in parentheses in Table 1. As expected with cross-
validation, the values of R2 are lower than for the original set of data (regression equations 
almost invariably fit the data from which they are derived better than cross-validation data). 
Also, the correlation between the 5-point and 7-point scales is slightly lower for these data (r 
= .879, p < .001). However, the pattern of results is similar to the original data set, with all 
equations fitting reasonably well (accounting for 76.8% – 78.4% of the variance). The simple 
proportional transformation again fit more poorly than the other equations. 
 

Inverse Linear Equations 
 The linear, quadratic, third-order polynomial, and power function equations generated 
estimates that did not differ meaningfully from one another in accuracy: the lowest 
coefficient of determination for the original set of data was R2 = .846 and the highest was R2 
= .851. In the light of these findings, the most suitable method of estimation is probably best 
chosen with the help of Occam’s razor. The simplest is the linear transformation, and it seems 
the most sensible choice for general use. 
 However, for practical applications it is desirable to have a pair of equations with an 
inverse functional relationship to each other, that is, an equation for estimating 7-point from 
5-point ratings that is an inverse function of the equation for estimating 5-point from 7-point 
ratings. Equations 1 and 2 do not have this inverse relation to each other. For instance, if a 7-
point rating is estimated using Equation 1 from a 5-point rating x and the resulting estimation 
is then inserted into Equation 2 (to estimate its 5-point equivalent), the result will not be 
identical to the value of the original 5-point rating x. 
 A pair of inverse linear equations can be calculated by averaging the derived regression 
equations. Rewriting Equations 1 and 2 uniformly, using x7 to represent 7-point ratings and x5 
to represent 5-point ratings, 
 
 x7 = (1.35 ± .04)x5 + (.01 ± .13), [9] 
 x5 = (.63 ± .18)x7 + (.50 ± .08). [10] 
 
From Equation 10, 
 (.63 ± .18)x7 = x5 – (.50 ± .08). [11] 
 
With due attention to the error terms, this leads to 
 
 x7 = (1.59 ± .45)x5 – (.79 ± .26). [12] 
 
Taking Equations 9 and 12, averaging, and inverting to provide two equations, then, 
 
 x7 = (1.47 ± .23)x5 – (.40 ± .15), [13] 
 x5 = (.68 ± .10)x7 + (.27 ± .11). [14] 



 
Equations 13 and 14 provide a fully invertible method of estimating 7-point from 5-point and 
5-point from 7-point ratings with negligible loss of accuracy compared to the least-squares 
regression equations. In fact, the R2 values for the revised equations are both .843 for the 
original data, showing that they account for 84.3% of the variance. For the cross-validation 
data, the values are .764 for the conversion from a 7-point to a 5-point scale, and .754 for the 
conversion from a 5-point to a 7-point scale. 
 

Discussion and Conclusions 
 Previous research does not appear to have focused on the problems of comparison, 
equivalence, and estimation of scores derived from rating scales with unequal numbers of 
response categories or alternatives. Such problems are ubiquitous in a wide variety of pure 
and applied research, and non-empirical solutions are inadequate. They are analogous to 
psychophysical problems, requiring solutions based on empirical information about how 
people respond to rating scales that differ only in their numbers of response categories. 
 The results showed that linear regression equations gave results virtually equivalent to 
those derived from more complicated transformations. In hindsight this is not surprising. 
Psychophysical relations between the magnitude of sensations and the physical intensity of 
their corresponding stimuli have usually been found to be best described by logarithmic or 
power functions (Stevens, 1975). In the case of rating scales with unequal numbers of 
response categories, the relationship between the two variables is a psychological rather than 
a psychophysical relation, and some simple relationship could perhaps have been anticipated. 
 The multiplicative constant a in the linear equation y = ax + b turned out to be close to 
7/5 in Equation 13 and to 5/7 in Equation 14. However, the linear regression equations are 
preferable to the simple proportional transformation (multiplying by 7/5 or 5/7), because they 
are empirically derived, include the extra specification of an additive constant, and provide 
error terms. Straightforward z transformations fit the data as well as the linear 
transformations, but they can be applied only when data are available from which to estimate 
the variance or standard deviation of the untransformed scores, and such data are not always 
provided in summaries of data collected in the past. When standard deviations are 
unavailable, z scores cannot be calculated, whereas transformations via the inverse linear 
equations derived in this article may still be used for converting scores. 
 Although 5-point and 7-point rating scales are by far the most common, other scale 
lengths are sometimes used. Further research is required to determine whether the 
conclusions reported in this article apply more generally to other scale lengths. Meanwhile, 
the inverse Equations 13 and 14 for the comparison of 5-point and 7-point data are 
recommended for the estimation of equivalences. 
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