University of Leicester
Browse

Comparison of Early Outcomes for Normothermic and Hypothermic Cardiopulmonary Bypass in Children Undergoing Congenital Heart Surgery.

Download (348.54 kB)
journal contribution
posted on 2019-07-03, 11:17 authored by Antonio F Corno, Claire Bostock, Simon D Chiles, Joanna Wright, Maria-Teresa Jn Tala, Branko Mimic, Mirjana Cvetkovic
Objective: Comparison of early outcomes of normothermic cardiopulmonary bypass (N-CPB, ≥35°C) with hypothermic cardiopulmonary bypass (H-CPB, 28-34°C) for congenital heart defects. Methods: Data from 99 patients <2 years operated with N-CPB (n = 48) or H-CPB (n = 51) were retrospectively reviewed: aortic X-clamping and CPB duration, vasoactive inotropic score (VIS), arterial lactate, pH and base excess, urine output, extubation, PICU stay, transfusion requirements, chest drain losses, costs of transfusions, and costs of PICU stay. Results: The two groups were homogeneous for diagnosis, risk factors, surgery and demographic variables: N-CPB age 7.7 ± 6.1 months, weight 6.2 ± 2.4 kg, and H-CPB age 6.6 ± 6.5 months, weight 6.1 ± 2.4 kg. There were no hospital deaths in either group. VIS in N-CPB was lower than H-CPB on PICU arrival (9.7 ± 5.9 vs. 13.4 ± 7.9, P < 0.005), after 4 h (7.0 ± 5.2 vs. 11.1 ± 7.3, P < 0.001) and 24 h (2.8 ± 3.6 vs. 5.6 ± 5.6, P < 0.003); arterial pH was better at PICU arrival (7.33 ± 0.09 vs. 7.30 ± 0.09, P = 0.046) after 4 h (7.35 ± 0.07 vs. 7.32 ± 0.07, P = 0.022) and after 24 h (7.37 ± 0.05 vs. 7.35 ± 0.05, P = 0.01). Extubation was earlier in N-CPB than in H-CPB (22 ± 27 vs. 48 ± 57 h, P = 0.003) as PICU discharge (61 ± 46 h vs. 87 ± 69 h, P = 0.021). Transfusion requirements in operating room were lower in N-CPB vs. H-CPB for RBC, FFP, cryoprecipitate, and platelets, while during the first 24 h in PICU were lower only for cryoprecipitate and platelets. Chest drain losses (mL/kg) on PICU arrival, after 4 and 24 h were lower with N-CPB vs. H-CPB (respectively 1.5 ± 1.4 vs. 2.5 ± 2.7, P = 0.013, 7.8 ± 6.0 vs. 10.9 ± 8.7, P = 0.025, and 23.0 ± 12.0 vs. 27.9 ± 15.2, P = 0.043). Tranexamic acid infusion was required in 7/48 (14.6%) patients with N-CPB vs. 18/51(= 35.3%) in H-CPB (P = 0.009). The average total costs/patient of blood and blood products (RBC, FFP, cryoprecipitate, platelets) were lower in N-CPB vs. H-CPB for both the first 24 h after surgery (£204 ± 169 vs. £306 ± 254, P = 0.011) as well as during the total duration of PICU stay (£239 ± 193 vs. £427 ± 337, P = 0.001). The average cost/patient/day of stay in PICU was lower in N-CPB than in H-CPB (£4,067 ± 3,067 vs. £5,800 ± 4,600, P = 0.021). Conclusions: N-CPB may reduce inotropic and respiratory support, shorten PICU stay, and decrease peri-operative transfusion requirements, with subsequent costs reduction, compared to H-CPB. Future studies are needed to validate and support wider use of N-CPB.

History

Citation

Frontiers in Pediatrics, 2018, 6:219

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Cardiovascular Sciences

Version

  • VoR (Version of Record)

Published in

Frontiers in Pediatrics

issn

2296-2360

Acceptance date

2018-07-17

Copyright date

2018

Available date

2019-07-03

Publisher version

https://www.frontiersin.org/articles/10.3389/fped.2018.00219/full

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC