University of Leicester
Browse

Constraints on inorganic gaseous iodine in the tropical upper troposphere and stratosphere inferred from balloon-borne solar occultation observations

Download (1.09 MB)
journal contribution
posted on 2016-02-10, 11:23 authored by A. Butz, Hartmut Bösch, C. Camy-Peyret, M. P. Chipperfield, M. Dorf, S. Kreycy, L. Kritten, C. Prados-Román, J. Schwärzte, K. Pfeilsticker
We report upper limits of IO and OIO in the tropical upper troposphere and stratosphere inferred from solar occultation spectra recorded by the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectroscopy) payload during two stratospheric balloon flights from a station in Northern Brazil (5.1°S, 42.9° W). In the tropical upper troposphere and lower stratosphere, upper limits for both, IO and OIO, are below 0.1 ppt. Photochemical modelling is used to estimate the compatible upper limits for the total gaseous inorganic iodine burden (Iy) amounting to 0.09 to 0.16 (+0.10/-0.04) ppt in the tropical lower stratosphere (21.0 km to 16.5 km) and 0.17 to 0.35 (+0.20/-0.08) ppt in the tropical upper troposphere (16.5 km to 13.5 km). In the middle stratosphere, upper limits increase with altitude as sampling sensitivity decreases. Our findings imply that the amount of gaseous iodine transported into the stratosphere through the tropical tropopause layer is small. Thus, iodine-mediated ozone loss plays a minor role for contemporary stratospheric photochemistry but might become significant in the future if source gas emissions or injection efficiency into the upper atmosphere are enhanced. However, photochemical modelling uncertainties are large and iodine might be transported into the stratosphere in particulate form.

History

Citation

Atmospheric Chemistry and Physics, 2009, 9 (18), pp. 7229-7242

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • VoR (Version of Record)

Published in

Atmospheric Chemistry and Physics

Publisher

Copernicus Publications on behalf of the European Geosciences Union

issn

1680-7316

eissn

1680-7324

Acceptance date

2009-09-11

Copyright date

2009

Available date

2016-02-10

Publisher version

http://www.atmos-chem-phys.net/9/7229/2009/

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC