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ABSTRACT: Copper-catalyzed coupling of readily available ketiminoesters, allenes and a diboron affords densely functionalized 
quaternary α-amino esters bearing adjacent stereocenters and versatile vinyl boronate motifs. The method utilizes a commercially 
available copper(I) catalyst, operates at ambient temperature and features a catalytic allyl cupration of ketiminoesters. 
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Due to their enhanced metabolic stability towards hydrolysis 
and the structural rigidity they lend to peptide backbones, qua-
ternary α-amino acids are vital building blocks in pharmaceu-
tical research and the study of proteins.1 Although some qua-
ternary α-amino acids arise naturally from post-translational 
modification,2 their synthesis in the laboratory is important 
and remains a challenge due to the inherent steric congestion 
encountered during the construction of the fully-substituted 
stereogenic center at the heart of the motif. 
The stereoselective synthesis of quaternary α-amino acids and 
their derivatives presents a particularly important challenge. 
Various strategies have been developed including amination at 
the α-position of carbonyls, introduction of the carboxyl group 
via nitrile addition, and modification of precursors such as 
azlactones and ketiminoesters.3 The latter approaches are par-
ticularly attractive as a variety of substituents can potentially 
be introduced at the quaternary center. With particular regard 
to the use of readily-available ketiminoesters, they have been 
employed as both nucleophilic and electrophilic partners in 
approaches to quaternary α-amino acids.3a For example, using 
an umpolung strategy, nucleophilic attack of an organometal-
lic reagent on nitrogen of ketiminoesters generates enolates 
that can be quenched using various electrophiles (Scheme 
1A).4 Ketiminoesters can also be used as electrophiles in addi-
tions of stoichiometric organometallic reagents,5 organobo-
ranes6 and organosilanes.7 Crucially, while metal-catalyzed 
additions to aldiminoesters are widespread,3a there are relative-
ly few examples of metal-catalyzed additions to ketiminoes-
ters and these typically involve alkyne and styrene coupling 
partners (Scheme 1B).8 

 

 
Scheme 1. The use of ketiminoesters provides concise ac-
cess to quaternary α-amino acids. A. Ketiminoesters as 
pro-nucleophiles. B. The use of ketiminoesters as electro-
philes in catalytic couplings is rare. C. This work: Ketimi-
noesters in a copper-catalyzed, borylative coupling with 
allenes. 
 
Allenes have acquired privileged status in synthesis and are 
prized for their utility in mild and atom efficient transfor-
mations,9 including multi-component reactions.10 Despite this, 
allenes have rarely been used in the synthesis of acyclic qua-
ternary α-amino acids.11 Nonetheless, we envisaged that al-
lenes would serve as suitable precursors to allyl metals for 
catalytic coupling with ketiminoesters and the construction of 
high-value quaternary α-amino esters.12 Inexpensive copper 
catalysts are able to functionalize allenes by selective addition 
of an in situ generated copper-element species, formation of a 
transient allylcopper species, and subsequent electrophilic 
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trapping.13 However, the use of imines as electrophiles in cop-
per-catalyzed couplings with allenes remains rare14 and 
ketimines have not been used in such couplings to prepare α-
quaternary amino acid derivatives. Herein, we describe a ste-
reocontrolled, copper-catalyzed coupling of ketiminoesters, 
allenes, and bis(pinacolato)diboron to afford highly function-
alized quaternary α-amino esters (Scheme 1C). 
We began by screening various copper catalysts (5 mol%) for 
the proposed coupling using ketiminoester (1a) and cyclohex-
ylallene (2a) with B2pin2. From the outset, NHC-Cu(I) catalyst 
systems showed promising results, forging the C–B and C–C 
bonds in 3a despite the build-up of significant steric conges-
tion (Table 1; see Supporting Information for details). While 
the use of commercial IMesCuCl at ambient temperature gave 
3a in moderate yield, albeit with low diastereoselectivity, the 
use of IPrCuCl gave 3a in high yield with high diastereoselec-
tivity (Table 1, entries 1 and 2). We tentatively suggest that 
the increase in selectivity observed with the IPr ligand is due 
to its increased size. Next, a range of bases were screened (see 
Supporting Information for details). The use of NaOtBu and 
LiOtBu in place of KOtBu had a significant detrimental effect 
on yield (entries 3 and 4). Lowering (0 °C) and raising (50 °C) 
the reaction temperature decreased the yield and diastereose-
lectivity (entries 5 and 6). A small increase in the amount of 
B2pin2 used afforded 3a in 85% isolated yield on a 0.25 mmol 
scale (entry 7). Low yields were obtained using other diboron 
reagents such as B2(neo)2 and B2(cat)2 (see Supporting Infor-
mation for details). The relative configuration of 3a was con-
firmed by X-ray crystallography. 
 

 

Table 1. Optimization of the copper-catalyzed borylative 
coupling to give quaternary α-amino esters. 

Reaction carried out on a 0.1 mmol scale. a NMR yields were 
determined by 1H NMR analysis of the crude product mixture 
using an internal standard. b dr values were determined by 1H 
NMR analysis of the crude product mixture. c B2pin2 (1.3 eq) was 

used. d The reaction was carried out on a 0.25 mmol scale. e Iso-
lated yield. PMP = 4-C6H4OMe. 

We next set about assessing the reach of the three-component 
approach to quaternary α-amino esters. The scope with regard 
to the C-substituent of the ketiminoester input was first ex-
plored (Scheme 2). Aryl substituents bearing trifluoromethyl 
(3b), bromo (3c), thiomethyl (3d) and methoxy (3e) function-
ality proved to be compatible with the process. Furthermore, 
the use of ketiminoesters bearing naphth-2-yl and 2-thienyl 
units delivered quaternary α-amino esters 3g and 3h, respec-
tively, in high isolated yields and with good diastereocontrol. 
Finally, a trifluoromethyl substituted ketiminoester underwent 
efficent coupling to give 3i in good yield and with moderate 
diastereocontrol. 

 
Scheme 2. Varying the C-substituent of the ketiminoester 
in the copper-catalyzed three-component coupling. 

NMR yield and dr values were determined by 1H NMR analy-
sis of the crude product mixture. Isolated yields are given in pa-
rentheses. PMP = 4-C6H4OMe. 

In addition to employing p-methoxyphenyl as the protecting 
group on the nitrogen of the ketiminoesters and of our prod-
ucts, the use of other synthetically and medicinally relevant N-
substituents was also investigated (Scheme 3). Quaternary α-
amino acid esters were constructed with bromo (3j), fluoro 
(3k), and medicinally-relevant morpholino (3l) groups on the 
N-aryl substituent. No product was observed using an N-
benzyl ketiminoester (1m). This is likely due to the presence 
of acidic benzylic protons in the ketiminoester. Finally, we 
varied the ester group of the ketiminoester: The use of benzyl 
and methyl ester substrates gave the expected products 3n and 
3o, respectively, in good yield and with high diastereocontrol 
(Scheme 3). 
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7c,d IPrCuCl tBuOK 20 88 (85)e 92:8 



 

 
Scheme 3. Varying the N-substituent and the O-substituent 
of the ketiminoester in the copper-catalyzed three-
component coupling. 

NMR yields and dr values were determined by 1H NMR analy-
sis of the crude product mixture. Isolated yields are given in pa-
rentheses. PMP = 4-C6H4OMe. 

 

Scheme 4. Varying the allene in the copper-catalyzed three 
component coupling. 

NMR yields and dr values were determined by 1H NMR analy-
sis of the crude product mixture. Isolated yields are given in pa-
rentheses. PMP = 4-C6H4OMe 

The scope with regard to the allene input was also assessed 
(Scheme 4). Gratifyingly, a range of primary alkyl allenes 
bearing various substituents, including linear and branched 
alkyl groups (3p, 3q, 3r), silyl ether (3s) and alkyl bromide 
(3t) functionality, afforded the desired products in good yield 
(up to 91%) and moderate to good diastereoselectivity (up to 
80:20 dr). The chemoselectivity observed in the presence of an 
electrophilic primary alkyl bromide group is particularly 
noteworthy (formation of 3t).15 Aryl allenes were also compat-
ible with the copper-catalyzed process. For example, phenyl-
allene afforded 3u in 75% yield and 92:8 dr. Aryl allenes bear-
ing fluoro (3w), amidyl (3x), and chloro (3y) substituents also 
delivered the corresponding products with good to high dia-
stereocontrol (up to 86:14 dr) albeit in moderate yield (42-
61%). 
The proposed catalytic cycle for the multi-component cou-
pling (Scheme 5) is thought to involve initial formation of the 
ligated copper-alkoxide complex I and subsequent transmetal-
lation with B2pin2 to afford borylcopper species II. Complex 
II reacts with allene 2 through a chemo- and regioselective 
borocupration to generate an allylcopper intermediate. Due to 
the bulkiness of the NHC ligand, copper coordinates to the 
terminal double bond of the allene, avoiding unfavourable 
steric interactions with the R4 group, and adds to the least hin-
dered terminal carbon to give Z-allylcopper III. Allylcopper 
III then undergoes γ-addition to the ketiminoester 1, generat-
ing two stereocenters. Copper-alkoxide I or borylcopper spe-
cies II is then regenerated from copper amide IV. The desired 
quaternary α-amino esters are obtained by hydrolysis of V 
upon work up. 
 

Scheme 5. Proposed catalytic cycle. 
 
X-ray crystallographic analysis reveals that ketiminoesters 1 
possess Z-geometry.16 However, ketimines are prone to E/Z 
isomerization17 and this could take place under the conditions 
of the reaction. Thus, to probe the importance of ketiminoester 
configuration and conformation, we prepared a substrate in 
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which both are locked and explored its reactivity: Cyclic 
ketiminoester 1z, locked in a Z-configuration and with a man-
datory s-trans conformation gave product 3aa in only 11% 
yield albeit with high diastereocontrol. This suggests that the 
reaction can proceed with Z-ketiminoesters, however, the abil-
ity to access the s-cis conformation and/or E-imine geometry 
could be important for optimal cross-coupling. 
 

 
Scheme 6. A. Using a configurationally and conformatio-
nally locked ketiminoester. 

NMR yield and dr value was determined by 1H NMR analysis 
of the crude product mixture. Isolated yield is given in parenthe-
ses. B. Possible transition states for the coupling of the Z-
allylcopper and ketiminoester. 

 
Based on this and previous observations,14a,14b we propose two 
possible transition states for the addition of the allylcopper 
intermediate to the ketiminoester that are consistent with the 
relative stereochemistry observed in the products (Scheme 
6B). It has previously been suggested that Z-allylcopper spe-
cies undergo 1,2-addition to imines through a chair-like transi-
tion state involving coordination of copper to the nitrogen of 
the imine.18 Thus transition structure A, featuring a Z-
configured imine may be relevant. However, the control ex-
periment using locked substrate 1p may implicate a boat-like 
transition structure B in which both the imine nitrogen and 
ester coordinate to copper. Crucially, in transition structure B, 
isomerization to the E-ketiminoester and adoption of an s-cis 
conformation is necessary thus explaining why 1p performs 
poorly in the coupling (Scheme 6B). 
The use of 1,1-disubstituted allenes in couplings to form qua-
ternary α-amino acid esters bearing two new, vicinal fully-
substituted centers was investigated: ketiminoester 1a under-
went smooth coupling with 1,1-dimethylallene 2l to give a 
mixture of regioisomers in 73% yield. Interestingly, tetrasub-
stituted vinylboronate 3aa’ was the major product although the 
highly-congested, terminal vinyl boronate 3aa was also for-
med (3aa/3aa’, 17:83 rs) (Scheme 7A). Such a switch in regi-
oselectivity with 1,1-disubstituted allenes has not previously 
been observed in catalytic allylcopper addition to imines.14 
Suspecting that the initially formed primary allylcopper may 
isomerize to the tertiary allyl copper prior to γ-addition to the 
ketiminoester (Scheme 7B), and thus leading to 3aa’ as the 
major regioisomeric product, we proposed that a larger ligand 
on copper might prevent isomerization on steric grounds. 
Thus, we employed Sollogoub’s large cyclodextrin NHC-Cu 
catalyst ((β-ICyD)CuCl)19 and observed a dramatic switch in 

regioselectivity and the major regioisomeric product was now 
3aa (3aa/3aa’, 87:13 rs). 
 

 

Scheme 7. The use of a 1,1-disubstituted allene in the cop-
per-catalyzed three-component coupling. 

The NMR yield and rs value were determined by 1H NMR ana-
lysis of the crude product mixture. a The reaction was carried out 
at 60 °C. PMP = 4-C6H4OMe. 

 
The three-component coupling was successfully performed on 
a gram scale (3.5 mmol) using only 2.5 mol% of the copper 
catalyst and affording 3a in 83% yield and 92:8 dr (1.75 g). 
After recrystallization, 3a was obtained with >95:5 dr. The 
synthetic utility of the quaternary α-amino ester products, 
bearing multiple functional groups, was investigated using 3a. 
 

 
Scheme 8. Gram scale three-component coupling and ma-
nipulation of 3a. 

Dr values were determined by 1H NMR analysis of the crude 
product mixture. Isolated yields are given. (a) H2O2 (5.0 eq), aq. 
NaOH (5.0 eq), THF, 0 °C, 0.5 h; (b) LiAlH4 (1.0 eq), THF, 0 °C, 
4 h; (c) (NH4)2Ce(NO3)6 (3.0 eq), MeCN, H2O, –10 °C, 1.5 h then 
HCl (1 M aq. soln, 2.6 eq), 20 °C, 0.25 h; (d) (tert-
butoxycarbonyl)glycine (1.0 eq), N-methylmorpholine (1.0 eq), 
isobutyl chloroformate (1.0 eq), THF, –15 °C to RT, 17 h.  PMP = 
4-C6H4OMe. 
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The versatile vinyl boronate motif was successfully oxidized 
using H2O2/NaOH to afford methyl ketone 4 with no erosion 
of relative stereochemical integrity (Scheme 8). Thus, our 
method allows facile access to 1,4-dicarbonyl compounds 
bearing α- and β-stereocenters. Under reducing conditions 
(LiAlH4), ester 3a was converted to the corresponding primary 
alcohol 5, with spontaneous formation of aminoborane. B-N 
heterocycles have found application as isosteres in biomedical 
research and materials science.20 Finally, the PMP protecting 
group on nitrogen was removed using ceric ammonium nitrate 
(CAN) to afford the primary amine 6, and can be coupled with 
a glycine derivative to afford dipeptide 7. 
In summary, we have developed a copper-catalyzed borylative 
allylation of ketiminoesters using allenes and 
bis(pinacolato)diboron. The process involves selective 
borocupration of allenes and the diastereoselective allylcupra-
tion of ketiminoesters, operates at ambient temperature, over-
comes significant steric congestion, and delivers quaternary α-
amino esters bearing adjacent stereocenters and versatile vi-
nylboronate motifs. 
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