University of Leicester
Browse
- No file added yet -

Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides.

Download (748.58 kB)
journal contribution
posted on 2019-06-11, 15:32 authored by B Rihtman, S Bowman-Grahl, A Millard, RM Corrigan, MRJ Clokie, DJ Scanlan
Bacteriophage possess a variety of auxiliary metabolic genes (AMGs) of bacterial origin. These proteins enable them to maximise infection efficiency, subverting bacterial metabolic processes for the purpose of viral genome replication and synthesis of the next generation of virion progeny. Here, we examined the enzymatic activity of a cyanophage MazG protein - a putative pyrophosphohydrolase previously implicated in regulation of the stringent response via reducing levels of the central alarmone molecule (p)ppGpp. We demonstrate however, that the purified viral MazG shows no binding or hydrolysis activity against (p)ppGpp. Instead, dGTP and dCTP appear to be the preferred substrates of this protein, consistent with a role preferentially hydrolysing deoxyribonucleotides from the high GC content host Synechococcus genome. This showcases a new example of the fine-tuned nature of viral metabolic processes.

Funding

B. R. was in receipt of a Chancellor's International PhD Scholarship from the University of Warwick. R.M.C. was supported by funding from the Wellcome Trust and Royal Society grant 104110. This work was also supported by the Natural Environment Research Council through Research Grants NE/J02273X/1 and NE/N003241/1. Bioinformatics analysis was carried out using MRC CLIMB Infrastructure (grant MR/L015080/1).

History

Citation

Environmental Microbiology Reports, 2019, 11(3) pp. 448-455

Author affiliation

/Organisation/COLLEGE OF LIFE SCIENCES/School of Medicine/Department of Infection, Immunity and Inflammation

Version

  • VoR (Version of Record)

Published in

Environmental Microbiology Reports

Publisher

Wiley, Society for Applied Microbiology (SfAM)

eissn

1758-2229

Acceptance date

2019-02-26

Copyright date

2019

Available date

2019-06-11

Publisher version

https://onlinelibrary.wiley.com/doi/full/10.1111/1758-2229.12741

Notes

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC