posted on 2023-04-13, 16:25authored byD Jimenez-Harrison, CJ Huseby, CN Hoffman, S Sher, D Snyder, B Seal, C Yuan, H Fu, V Wysocki, F Giorgini, J Kuret
Tau aggregate-bearing lesions are pathological markers and potential mediators of tauopathic neurodegenerative diseases, including Alzheimer’s disease. The molecular chaperone DJ-1 colocalizes with tau pathology in these disorders, but it has been unclear what functional link exists between them. In this study, we examined the consequences of tau/DJ-1 interaction as isolated proteins in vitro. When added to full-length 2N4R tau under aggregation-promoting conditions, DJ-1 inhibited both the rate and extent of filament formation in a concentration-dependent manner. Inhibitory activity was low affinity, did not require ATP, and was not affected by substituting oxidation incompetent missense mutation C106A for wild-type DJ-1. In contrast, missense mutations previously linked to familial Parkinson’s disease and loss of α-synuclein chaperone activity, M26I and E64D, displayed diminished tau chaperone activity relative to wild-type DJ-1. Although DJ-1 directly bound the isolated microtubule-binding repeat region of tau protein, exposure of preformed tau seeds to DJ-1 did not diminish seeding activity in a biosensor cell model. These data reveal DJ-1 to be a holdase chaperone capable of engaging tau as a client in addition to α-synuclein. Our findings support a role for DJ-1 as part of an endogenous defense against the aggregation of these intrinsically disordered proteins.
Funding
This project was supported by a grant from the National Institutes of Health (RF1AG054018 [to J.K.]). Mass spectrometry experiments were supported by the Resource for Native Mass Spectrometry Guided Structural Biology (P41GM128577 [to V.W.]). C.N.H. was supported by Molecular Biophysics Training grant T32 GM118291
History
Author affiliation
Department of Genetics and Genome Biology, University of Leicester