posted on 2017-11-03, 15:29authored byJ. D. R. Pierel, C. A. Nixon, E. Lellouch, L. N. Fletcher, G. L. Bjoraker, R. K. Achterberg, B. Bezard, B. E. Hesman, P. G. J. Irwin, F. M. Flasar
We present new measurements of the deuterium abundance on Jupiter and Saturn, showing evidence that Saturn's atmosphere contains less deuterium than Jupiter's. We analyzed far-infrared spectra from the Cassini Composite Infrared Spectrometer to measure the abundance of HD on both giant planets. Our estimate of the Jovian D/H = (2.95 ± 0.55) × 10−5 is in agreement with previous measurements by ISO/SWS: (2.25 ± 0.35) × 10−5, and the Galileo probe: (2.6 ± 0.7) × 10−5. In contrast, our estimate of the Saturn value of (2.10 ± 0.13) × 10−5 is somewhat lower than on Jupiter (by a factor of ${0.71}_{-0.15}^{+0.22}$), contrary to model predictions of a higher ratio: Saturn/Jupiter = 1.05–1.20. The Saturn D/H value is consistent with estimates for hydrogen in the protosolar nebula (2.1 ± 0.5) × 10−5, but its apparent divergence from the Jovian value suggests that our understanding of planetary formation and evolution is incomplete, which is in agreement with previous work.
Funding
The US-based authors: J.E.D.P., C.A.N., G.L.B., R.K.A., B.E.H., and F.M.F. were supported by the NASA Cassini Mission during the period when this research was conducted. L.N.F. was supported by a Royal Society Research Fellowship at the University of Leicester. P.G.J.I. was supported by the United Kingdom Science and Technology Facilities Council.
History
Citation
Astronomical Journal, 2017, 154 (5)
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy