University of Leicester
Browse

Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field

Download (878.85 kB)
journal contribution
posted on 2012-10-24, 09:16 authored by Stephen E. Milan, Mark Lester, S. W. H. Cowley, M. Brittnacher
We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the ionospheric footprint of a high-latitude reconnection site. The large field-of-view afforded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By < 0 nT or By > 0 nT, respectively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By \approx 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude luminosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.

History

Citation

ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 2000, 18 (4), pp. 436-444

Published in

ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES

Publisher

European Geosciences Union (EGU), Copernicus Publications, Springer Verlag (Germany)

issn

0992-7689

eissn

1432-0576

Copyright date

2000

Available date

2012-10-24

Publisher version

http://www.ann-geophys.net/18/436/2000/angeo-18-436-2000.html

Language

English