University of Leicester
Browse
1512.07577v3.pdf (476.32 kB)

Decomposition spaces, incidence algebras and Möbius inversion II: Completeness, length filtration, and finiteness

Download (476.32 kB)
journal contribution
posted on 2019-02-15, 09:48 authored by I Gálvez-Carrillo, J Kock, A Tonks
This is the second in a trilogy of papers introducing and studying the notion of decomposition space as a general framework for incidence algebras and Möbius inversion, with coefficients in ∞-groupoids. A decomposition space is a simplicial ∞-groupoid satisfying an exactness condition weaker than the Segal condition. Just as the Segal condition expresses composition, the new condition expresses decomposition. In this paper, we introduce various technical conditions on decomposition spaces. The first is a completeness condition (weaker than Rezk completeness), needed to control simplicial nondegeneracy. For complete decomposition spaces we establish a general Möbius inversion principle, expressed as an explicit equivalence of ∞-groupoids. Next we analyse two finiteness conditions on decomposition spaces. The first, that of locally finite length, guarantees the existence of the important length filtration for the associated incidence coalgebra. We show that a decomposition space of locally finite length is actually the left Kan extension of a semi-simplicial space. The second finiteness condition, local finiteness, ensures we can take homotopy cardinality to pass from the level of ∞-groupoids to the level of Q-vector spaces. These three conditions — completeness, locally finite length, and local finiteness — together define our notion of Möbius decomposition space, which extends Leroux's notion of Möbius category (in turn a common generalisation of the locally finite posets of Rota et al. and of the finite decomposition monoids of Cartier–Foata), but which also covers many coalgebra constructions which do not arise from Möbius categories, such as the Faà di Bruno and Connes–Kreimer bialgebras. Note: The notion of decomposition space was arrived at independently by Dyckerhoff and Kapranov [6] who call them unital 2-Segal spaces.

Funding

The first author was partially supported by grants MTM2012-38122-C03-01, MTM2013-42178-P, 2014-SGR-634, MTM2015-69135-P, MTM2016-76453-C2-2-P (AEI/FEDER, UE), and 2017-SGR-932, the second author by MTM2013-42293-P, MTM2016-80439-P (AEI/FEDER, UE), and 2017-SGR-1725, and the third author by MTM2013-42178-P and MTM2016-76453-C2-2-P (AEI/FEDER, UE)

History

Citation

Advances in Mathematics, 2018, 333, pp. 1242-1292

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Mathematics

Version

  • AM (Accepted Manuscript)

Published in

Advances in Mathematics

Publisher

Elsevier for Academic Press

issn

0001-8708

eissn

1090-2082

Acceptance date

2018-02-23

Copyright date

2018

Available date

2019-07-31

Notes

Corrigendum to “Decomposition spaces, incidence algebras and Möbius inversion II: Completeness, length filtration, and finiteness” [Adv. Math. 333 (2018) 1242–1292] https://doi.org/10.1016/j.aim.2020.107267

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC