posted on 2016-05-05, 10:35authored byAndrew Gleadall, Jingzhe Pan, Marc-Anton Kruft, Minna Kellomäki
A mathematical model was developed to relate the degradation trend of bioresorbable polymers to different underlying hydrolysis mechanisms, including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. The effect of each mechanism on molecular weight degradation and potential mass loss was analysed. A simple scheme was developed to identify the most likely hydrolysis mechanism based on experimental data. The scheme was first demonstrated using case studies, then used to evaluate data collected from 31 publications in the literature to identify the dominant hydrolysis mechanisms for typical biodegradable polymers. The analysis showed that most of the experimental data indicates autocatalytic hydrolysis, as expected. However, the study shows that the existing understanding on whether random or end scission controls degradation is inappropriate. It was revealed that pure end scission cannot explain the observed trend in molecular weight reduction because end scission would be too slow to reduce the average molecular weight. On the other hand, pure random scission cannot explain the observed trend in mass loss because too few oligomers would be available to diffuse out of a device. It is concluded that the chain ends are more susceptible to cleavage, which produces most of the oligomers leading to mass loss. However, it is random scission that dominates the reduction in molecular weight.
History
Citation
Acta Biomater, 2014, 10 (5), pp. 2223-2232
Author affiliation
/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Engineering