posted on 2025-03-07, 09:30authored byDeepak Sharma, Ahamed Ameen, Ali Alperen Bakir, Dibakor Boruah, Emily Davison, Krzysztof Wieczerzak, Krzysztof Maćkosz, Alvise Bianchin, Shiladitya PaulShiladitya Paul
This study examined the characteristics of mechanically alloyed (MA) Cantor alloy powder and the coatings produced from it using various deposition techniques, including cold spray (CS), high-velocity oxy-fuel, high-velocity air-fuel, and laser cladding (LC). Microstructure analysis of the MA powder revealed an irregular morphology and incomplete elemental mixing. The microstructure of the CS coating displayed an FCC crystal structure, with some XRD peaks corresponding to BCC phases due to the presence of unmixed elements. In contrast, all other coatings also exhibited oxides alongside FCC and BCC phases, with the LC coating containing a higher concentration of oxides. These coatings demonstrated high density and diverse microstructures, with CS coatings demonstrating effective transfer of powder microstructure. The CS coating had the highest hardness (679 ± 17 HV0.1) due to the retention of deformed microstructure from the powder, whilst the LC coating had the lowest hardness (215 ± 10 HV0.1). CALPHAD calculations using Thermo-Calc suggest that the presence of oxides in the coatings could be thermodynamically feasible, depending on the conditions. Deposition efficiency varied significantly among the methods, with LC achieving the highest efficiency (63 ± 6 %) and CS the lowest (14 ± 1 %).