Dietary specializations and diversity in feeding ecology of the earliest stem mammals

- 3
- 4 Pamela G. Gill¹, Mark A. Purnell², Nick Crumpton³[†], Kate Robson-Brown⁴, Neil J.
- 5 Gostling^{1,}††, M. Stampanoni⁵, Emily J. Rayfield¹
- 6

7 Affiliations:

- ¹School of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK.
- ⁹ ²Department of Geology, University of Leicester, University Road, Leicester, LE1 7RH, UK.
- ³Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ,
 UK.
- ⁴Department of Archaeology and Anthropology, University of Bristol, Woodland Road,
 Bristol, BS8 1UU, UK.
- ⁵Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland; Institute for
- Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, CH-8092 Zürich,
 Switzerland.
- 17 [†] Present address: Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
- 18 ^{††} Present address: Ocean and Earth Science, National Oceanography Centre, Southampton
- 19 University of Southampton, SO14 3ZH, UK
- 20
- 21
- 22 The origin and radiation of mammals are key events in the history of life, with fossils
- 23 placing the origin at 220 mya, in the Late Triassic¹. The earliest mammals, representing
- 24 the first 50 my of their evolution and including the most basal taxa, are widely
- 25 considered to be generalized insectivores^{1, 2}. This implies that the first phase of the
- 26 mammalian radiation associated with the appearance in the fossil record of significant
- 27 innovations such as heterodont dentition, diphyodonty, and the dentary-squamosal jaw
- 28 joint^{1, 3} was decoupled from ecomorphological diversification^{2, 4}. Finds of exceptionally
- 29 complete specimens of later Mesozoic mammals have revealed greater
- 30 ecomorphological diversity than previously suspected, including adaptations for
- 31 swimming, burrowing, digging and even gliding^{2, 5, 6}, but such well preserved fossils of
- 32 earlier mammals do not exist¹, and robust analysis of their ecomorphological diversity
- 33 has previously been lacking. Here we present the results of an integrated analysis,
- 34 utilizing synchrotron X-ray tomography and analyses of biomechanics, finite element
- 35 models and tooth microwear textures. We find significant differences in function and

36 dietary ecology between two of the earliest mammaliaform taxa, Morganucodon and 37 *Kuehneotherium*; taxa that are central to the debate on mammalian evolution. 38 Morganucodon possessed comparatively more forceful and robust jaws and consumed 39 'harder' prey, comparable to extant small-bodied mammals that eat significant 40 amounts of coleopterans. *Kuehneotherium* ingested a diet comparable to extant mixed 41 feeders and specialists on 'soft' prev such as lepidopterans. Our results reveal 42 previously hidden trophic specialization at the base of the mammalian radiation, hence 43 even the earliest mammaliaforms were beginning to diversify - morphologically, functionally and ecologically. In contrast to the prevailing view^{2,4}, this pattern suggests 44 45 that lineage splitting during the earliest stages of mammalian evolution was associated 46 with ecomorphological specialization and niche partitioning.

47

48 Recently, much progress has been made in understanding the pattern and timing of the radiation of mammals⁷⁻⁹, revealing successive waves of taxonomic and ecomorphological 49 diversification in Mid to Late Jurassic to Palaeogene stem clades and crown groups^{2, 10, 11}. 50 51 But understanding of early mammaliaforms and the initial radiation of mammals has lagged 52 behind. Here we address this problem by testing the hypothesis that two of the earliest and most basal mammaliaforms were ecomorphologically distinct. Morganucodon watsoni¹² and 53 *Kuehneotherium praecursoris*¹³ are central to the debate on mammalian origins and are of 54 55 fundamental phylogenetic importance (Extended Data Fig. 1). Morganucodon is one of the 56 earliest (Late Triassic-Early Jurassic) and best-known Mesozoic mammals, with a global distribution; *Kuehneotherium* is of a similar age and size^{1, 12, 13}. Both taxa are thought to be 57 generalized insectivores¹ and co-existed (see Supplementary Information for discussion of 58 59 sympatry) on a small landmass present during the Early Jurassic marine transgression 60 (Hettangian–Early Sinemurian, ca. 200 mya), in what is now Glamorgan, South Wales,

61	United Kingdom ^{1, 12} (Extended Data Fig. 2). In addition to the apomorphic mammalian jaw
62	joint, both taxa retain the plesiomorphic articular-quadrate jaw joint, as indicated by a well-
63	developed postdentary trough (Fig. 1a, b), thus indicating that the postdentary bones still
64	functioned as part of the jaw joint, rather than being incorporated into a definitive
65	mammalian middle ear (DMME) as in modern mammals ^{1-2, 12-14} (sensu ¹⁵). Curiously,
66	Kuehneotherium possesses advanced molars, with cusps arranged in an obtuse-triangle
67	pattern ^{13, 16} (Extended Data Fig. 3)
68	
69	We tested hypotheses of functional and dietary specialization in these early mammaliaforms
70	by generating digital mandibular reconstructions, and applied a suite of techniques: classical
71	mechanics, finite element modeling and quantitative textural analysis of tooth microwear.
72	The mandible is a good choice for study of feeding adaptations as it is primarily adapted for
73	biting, and is not constrained by sensory systems such as eye or brain size ¹⁷ . Our null
74	hypothesis was that functional performance did not differ between the two taxa.

76 Applying classical mechanics, we calculated the mechanical advantage (MA) for mid-molar, 77 premolar and canine bites, reflecting the efficiency of the jaw system at transmitting force 78 from the adductor muscles to the bite point. This revealed that Morganucodon has a notably 79 larger MA than *Kuehneotherium* (almost 50% greater during mid-molar biting) (Table 1), 80 indicating that the mandible of Morganucodon had the potential to generate much larger bite 81 forces than Kuehneotherium, and implying that Kuehneotherium bites were potentially faster 82 but less forceful. We also determined jaw strength in bending and torsion during biting, treating the mandibular corpus as a beam 18 . The pattern of bending strength reveals a very 83 84 different profile between the two taxa (Fig. 1c, d). Morganucodon shows peak resistance to 85 bending at the rear of the tooth row as might be expected, as this region serves as a structural 86 linkage between the tooth row and posterior functional elements of the jaw, such as the jaw 87 joint and muscles¹⁹. However, *Kuehneotherium* shows peak resistance in the region of the 88 anterior molars. Resistance to torsion (J) shows similar patterns (Fig. 1e, f). This different 89 biomechanical profile in *Kuehneotherium* may reflect the importance of resisting bending in 90 the central tooth row, in order to maintain the sharp bladed triangulated molars in precise 91 occlusion¹⁶.

93 Finite element analysis (FEA) allowed us to calculate stress, strain and deformation to assess the mechanical behaviour of the jaws²⁰. FEA can provide informative comparative data in the 94 absence of known input parameters¹⁷ and as such the two taxa were loaded with equal 95 96 adductor muscle forces and constrained at the jaw joint and bite points (Extended Data Fig. 97 4). FEA shows that, during a simulated bite, despite similar length and surface area, the 98 dentary of Kuehneotherium experiences greater maximum Von Mises stress and maximum 99 principal strain than Morganucodon, regardless of bite position, and higher reaction forces at 100 the jaw joint, despite generating consistently less bite reaction force (Fig. 1g, h; Table 1). 101 Kuehneotherium does not possess a robust condyle as in Morganucodon (Fig. 1a, b), further 102 reducing its ability to withstand high reaction forces at the jaw joint. We tested whether 103 Morganucodon or Kuehneotherium could generate enough bite force to pierce 'hard' insect 104 cuticle (where 'hard' and 'soft' refer to the ease with which prev is pierced and chewed²¹). 105 Bite force estimation can circumscribe the range of potential prey, providing a measure of 106 feeding performance and ecological partitioning^{22, 23}. A variety of insect prey was available at the time: the Glamorgan fissures have vielded beetle remains²⁴, and soft bodied insects, such 107 as scorpion flies, were well established in the Early Jurassic²⁵. (See Supplementary 108 109 Information for discussion of potential prey.) A bite of 2 N is required to pierce the cuticle of a 'hard' insect (e.g. beetle) of appropriate prey size for *Morganucodon* or *Kuehneotherium*²⁶, 110

⁹²

²⁷. For *Morganucodon* a simulated 2 N bite at mid-molar m2 (see Methods) did not generate 111 112 excessive stress in the jaw (maximum 54 MPa) (Fig. 1i). For Kuehneotherium, increasing 113 muscle loadings (keeping the ratio of muscle recruitment intact), to simulate a bite of 2 N at 114 mid-molar m3, produced higher reaction forces at the dentary condyle (5.45 N compared to 115 2.38 N for *Morganucodon*), and maximum VM stress values up to 134 MPa, which is 2.5 times that of *Morganucodon* and close to the tensile stress failure value for bone²⁸. This 116 117 suggests that *Kuehneotherium* was likely incapable of processing 'hard' cuticle, and further 118 illustrates differences in the biomechanical performance of the jaws. Comparative 119 biomechanical data therefore points to morphofunctional and dietary specialization in these 120 two taxa. 121 122 The hypothesis that *Morganucodon* and *Kuehneotherium* consumed different prey was

123 independently tested by comparing their tooth microwear textures to those of extant 124 insectivores with known dietary preferences (specimens listed in Extended Data Table 1). 125 Recent work on insectivorous bats has shown that microwear textural analysis based on 3D 126 roughness parameters discriminates between insectivore species that consume different proportions of 'hard' prey (such as beetles) and 'soft' prey (such as moths)²⁹. Bats provide a 127 128 useful comparative dataset for our work because of their well-studied dietary differences and 129 similarity in size to Morganucodon and Kuehneotherium. We compared the fossil taxa with 130 four species of bats: *Plecotus auritus* (Brown long-eared bat; a specialist on 'soft' insects); 131 Pipistrellus pipistrellus (Common pipistrelle) and P. pygmaeus (Soprano pipistrelle) (more 132 mixed diet, both specialize on Diptera (flies), but P. pipistrellus consumes insects with a 133 wider range of cuticle 'hardness' and more 'hard' prey than *P. pygmaeus*); *Rhinolophus* 134 ferrumequinum (Greater horseshoe bat; mixed diet, but including more beetles - prey that is 135 among the 'hardest' of insects) (Extended Data Table 2 for dietary details). In the bats, nine

roughness parameters differ significantly between species²⁹, and PCA of these parameters (Fig. 2) separates bats according to dietary preferences in a space defined by PC axes 1 and 2 (together accounting for 88.3% of variance) with axis 1 strongly correlated with dietary preferences ($r_s = 0.81$, P < 0.0001). Increasingly negative values indicate higher proportions of 'hard' prey, while increasing positive values indicate increasing proportions of 'soft' prey²⁹.

142

143 Projecting Kuehneotherium and Morganucodon data onto the axes resulting from the analysis 144 of bats produces clear separation of the two taxa. *Morganucodon* has negative values for 145 PC1, overlapping and extending beyond values for *R. ferrumequinum*. Slightly rougher 146 textures in *Morganucodon* suggest that it consumed a higher proportion of 'hard' prey. Most 147 *Kuehneotherium* specimens have positive values for PC1, overlapping the range of the 'soft' 148 insect specialist *Pl. auritus*. Two specimens have negative PC1 values and plot into a space 149 defined by the mixed feeding Pipistrellus. 13 roughness parameters from Morganucodon and 150 Kuehneotherium are correlated with the bat dietary axis (PC1; Extended Data Tables 3, 4 and 5), including 9 of the 10 parameters that in bats are correlated with $diet^{29}$ and values for PC1 151 152 differ significantly between the two fossil species (F = 5.67; d.f. = 6, 29; P = 0.0005). 153 Pairwise tests (Tukey HSD; P < 0.05) indicate that microwear textures in *Morganucodon* and 154 Kuehneotherium differ from one another, yet Morganucodon does not differ from bats with 155 mixed or 'harder' diets, and *Kuehneotherium* does not differ from the 'soft' insect specialist 156 and mixed feeders. Kuehneotherium specimens from different fissure localities do not differ 157 from one another (see Supplementary Information for specimen and fissure details). That 158 *Kuehneotherium* and *Morganucodon* are so clearly separated by application of PCA based on 159 extant bats with different diets provides powerful evidence that the two fossil taxa had diets 160 that differed significantly in terms of prey 'hardness', and provides independent validation of

distinctive mechanical behavior and function revealed through our standard beam	analysis
---	----------

162 and finite element modeling.

163

164	In summary, our analyses reveal previously hidden trophic diversity and niche partitioning at
165	the base of the mammalian radiation, supporting a hypothesis of coupled lineage splitting and
166	ecomorphological adaptation of the skull and jaws, even during the earliest stages of
167	mammalian evolution. Our approach, combining biomechanical analyses with tooth
168	microtextural validation of dietary differences, does not require exceptionally preserved
169	specimens, and is applicable to fragmentary fossil remains. As such it has the potential to
170	provide direct evidence of ecomorphology and adaptation through a range of vertebrate
171	radiations, utilizing the most commonly preserved fossil elements: teeth and jaws.
172	
173	References:
174 175	1. Kielan-Jaworowska, Z., Cifelli, R. & Luo, Z-X. <i>Mammals from the Age of Dinosaurs. Origins, Evolution, and Structure.</i> Columbia University Press (2004)
176 177	 Luo, Z-X. Transformation and diversification in early mammal evolution. <i>Nature</i> 450, 1011 (2007)
178	3. Kemp, T. S. The Origin and Evolution of Mammals. Oxford University Press (2005)
179 180	4. Bromham, L., Phillips, M. J. & Penny, D. Growing up with dinosaurs: molecular dates and the mammalian radiation. <i>Trends Ecol. Evol.</i> 14 , 113–118 (1999).
181 182 183	 Ji, Q., Luo, Z-X., Yuan, C. X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. <i>Science</i> 311, 1123 (2006)
184 185	 Meng, J., Hu, Y., Wang, Y., Wang, X. & Li, C. A Mesozoic gliding mammal from northeastern China. <i>Nature</i> 444, 889–893 (2006)
186 187	7. Meredith, R. W. <i>et al.</i> Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification. <i>Science</i> 334 , 521 (2011)
188 189 190	8. dos Reis, M., Inoue, J., Asher, R. J., Donoghue P. C. J. & Yang, Z. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. <i>Proc. R. Soc. B</i> 279 , 3491 (2012)

191 192	9.	O'Leary, M. A. <i>et al.</i> The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals <i>Science</i> 339 , 662 (2013)
193 194	10.	Wilson, G. P. <i>et al.</i> Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. <i>Nature</i> 483 , 457–460 (2012)
195 196	11.	Grossnickle, D. M. & Polly, P. D. Mammal disparity decreases during the Cretaceous angiosperm radiation. <i>Proc, R. Soc. B.</i> 280, 20132110 (2013)
197 198	12.	Kermack, K. A., Mussett, F. & Rigney, H. W. Lower jaw of <i>Morganucodon. Zool. J. Linn. Soc.</i> 53 , 87 (1973)
199 200	13.	Kermack, D. M., Kermack, K. A., Mussett, F. The Welsh pantothere <i>Kuehneotherium praecursoris</i> . Zool. J. Linn. Soc. 47 , 407 (1968)
201 202	14.	Luo, Z-X. Developmental Patterns in Mesozoic Evolution of Mammal Ears. <i>Ann.</i> . <i>Rev. Ecol., Evol. Syst.</i> 42 , 355 (2011)
203 204 205 206	15.	Allin, E. F. & Hopson, J. A. Evolution of the auditory system in Synapsida ("mammal-like reptiles" and primitive mammals) as seen in the fossil record. In <i>The</i> <i>Evolutionary Biology of Hearing</i> , D. B. Webster, R. R. Fay, A. N. Popper, Eds. (Springer-Verlag, New York). pp. 587–614 (1992)
207 208	16.	Crompton, W. A. & Jenkins, F. A. American Jurassic symmetrodonts and Rhaetic pantotheres. <i>Science</i> 155 , 1006 (1967)
209 210 211 212	17.	Tseng, Z. J., Mcnitt-Gray, J. L., Flashner, H., Wang, X. & Enciso, R. Model Sensitivity and Use of the Comparative Finite Element Method in Mammalian Jaw Mechanics: Mandible Performance in the Gray Wolf. <i>PLoS ONE</i> 6 e19171, doi:10.1371/journal.pone.00191 (2011)
213 214	18.	Therrien, F. Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. <i>J. Zool.</i> (2005) 267 , 249–270 (2005)
215 216	19.	Freeman, P. W. & Lemen, C. A. Simple predictors of bite force in bats: The good, the better and the better still. <i>J. Zool.</i> 282 , 284 (2010)
217 218	20.	Rayfield, E. J. Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. <i>Ann. Rev. Earth Planet. Sci.</i> 35 , 541 (2007)
219 220 221	21.	Evans, A. R. & Sanson, G. D. Biomechanical properties of insects in relation to insectivory: cuticle thickness as an indicator of insect 'hardness' and 'intractability'. <i>Aust. J. Zool.</i> 53 , 9 (2005)
222 223	22.	Dumont, E. R. & Herrel, A. The effects of gape angle and bite point on bite force in bats. <i>J. Exp. Biol.</i> 206 , 2117 (2003)
224 225 226	23.	Aguirre, L. F., Herrel, A., Van Damme, R. & Matthysen, E. Ecomorphological analysis of trophic niche partitioning in a tropical savanna bat community. <i>Proc. R. Soc. B</i> 269 , 1271–1278 (2002)
227	24.	Gardiner, B. G. New Rhaetic and Liassic beetles. <i>Palaeontology</i> 1, 87-88 (1961)

228 229	 Grimaldi, D. & Engel, M. S. Evolution of the Insects. Cambridge University Press (2005)
230 231	 Freeman, P. W. & Lemen, C. A. Using scissors to quantify hardness of insects: do bats select or size or hardness? J. Zool. 271 469–476 (2007)
232 233	27. Aguirre, L. F., Herrel, A., van Damme, R. & Matthysen, E. The implications of food hardness for diet in bats. <i>Funct. Ecol.</i> 17 , 201 (2003)
234	28. Currey, J. D. Bones: Structure and Mechanics. Princeton University Press (2002)
235 236 237	29. Purnell, M. A., Crumpton, N., Gill, P. G. & Rayfield, E. J. Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals. <i>J. Zool.</i> doi: 10.1111/jzo.12068 (2013)
238	30. Gill, P. G. Ph.D. thesis, University of Bristol, UK (2004)
239	
240	Supplementary information is linked to the online version of the paper at
241	www.nature.com/nature.
242	
243	Acknowledgments We thank G. Armstrong, R. Asher, E. Bernard, P. Brewer, I. Corfe, A.
244	Currant, A. Gill, T. Goddard, C. Hintermueller, J. Hooker, G. Jones, S. Lautenschlager, M.
245	Lowe, F. Marone, F. Marx, C. Palmer, M. Pound, M. Ruecklin and three anonymous referees.
246	Funded by NERC grants NE/E010431/1 and NE/K01496X/1 to E.J.R and P.G.G; M.A.P.
247	supported by NE/G018189/1. Use of the Swiss Light Source, Paul Scherrer Institut,
248	supported by European Commission 6th Framework Programme (RII3-CT-2004-506008).
249	
250	Author contributions E.J.R, P.G.G and M.A.P designed the study and wrote the paper;
251	P.G.G., E.J.R, N.J.G and M.S collected the SRXTM data; K.R-B and P.G.G collected the
252	μ CT scan data; P.G.G, created the reconstructions and digital models and analyzed the
253	biomechanical results; P.G.G and E.J.R interpreted the biomechanical results; P.G.G
254	prepared and acquired specimens for microwear analysis, M.A.P and N.C. collected the
255	microwear data, M.A.P. analyzed and interpreted the microwear results.

- 256
- 257 Author information Reprints and permissions information is available at
- 258 www.nature.com/reprints. The authors have no competing financial interests.
- 259 Correspondence and requests for materials should be addressed to Pamela Gill
- 260 (pam.gill@bristol.ac.uk) or Emily Rayfield (e.rayfield@bristol.ac.uk).
- 261

	Morganuc	odon	Kuehneoth	erium
MA (3D)				
Canine bite	0.51		0.31	
Premolar bite	0.42		0.24	
Molar bite	0.35		0.18	
Max. Von Mises stress (MPa)				
Standard loading canine bite	66		97	
Standard loading premolar bite	61		83	
Standard loading molar bite	54		77	
Max. principal strain (microstrain)				
Standard loading canine bite	3840		5800	
Standard loading premolar bite	3540 5020			
Standard loading molar bite	3100 4440			
Reaction forces (N)	Jaw joint	Bite	Jaw joint	Bite
Standard loading canine bite	2.96	1.31	3.45	0.66
Standard loading premolar bite	2.69	1.62	3.30	0.87
Standard loading molar bite	2.38	2.00	3.12	1.14

264 **Table 1. Biomechanical analysis results.**

265 Comparative mechanical advantage (MA), maximum Von Mises stress values (in MPa),

266 maximum principal strain values, and reaction forces (in N) for Morganucodon and

267 *Kuehneotherium* dentaries. See Methods section for an explanation of the standard loading

268 for muscles. These loads achieve a 2 N reaction bite force at the molar (m2) of

269 Morganucodon, sufficient to pierce insect cuticle.

272	Fig. 1. Digital reconstructions and biomechanical analyses of <i>Morganucodon</i> and
273	Kuehneotherium jaws. a-b. Reconstructed left mandibles, medial view. Missing portions in
274	grey. a. Morganucodon watsoni. b. Kuehneotherium praecursoris; dentition reconstructed
275	from Gill ³⁰ . c-d. Section moduli (dorsoventral Zx (blue) and mediolateral Zy (red), in mm ⁴)
276	for (c) Morganucodon and (d) Kuehneotherium. e-f. Polar moment of inertia (J) in the
277	dorsoventral (Ix) and mediolateral (Iy) planes), for (e) Morganucodon and (f)
278	Kuehneotherium. g-i. Finite element Von Mises stress contour plots for a unilateral molar
279	bite (m2 for Morganucodon and m3 for Kuehneotherium) with closed jaw: g. Morganucodon
280	and h. Kuehneotherium, with standard muscle loading. i. Kuehneotherium with muscle
281	loading multiplied to give a bite reaction force of 2N. Stress legend and contour plot scale
282	applies to g-i. Single vertical arrows indicate tooth constraints; three grouped arrows indicate
283	jaw joint constraints. (See Supplementary Information for links to scan data and FE model
284	images)
285	
286	Fig. 2. Quantitative textural analysis of microwear in bats and fossil mammaliaforms. a
287	d. Scale limited roughness surfaces of Morganucodon (a; specimen 34), R. ferrumequinum

288 (b; specimen 1), *Kuehneotherium* (c; specimen 24), and *Pl. auritus* (d; specimen 12); 146 x

 $110 \ \mu\text{m}$; contour vertical scale in μm . e. Principal components analysis of ISO roughness

290 parameters from bats and mammaliaforms. PCA analysis based on data for bats only, with

291 *Morganucodon* (n = 5) and *Kuehneotherium* data (P3 n = 5; P5 n = 6) projected onto the bat

292 PCA axes. There are two anomalous specimens: a single *Kuehneotherium* specimen (29) has

293 PC 1 values similar to *R. ferrum equinum*, and one of the Morganucodon specimens (32) plots

as an outlier to all other teeth analyzed. P3 = Pontalum 3 and P5 = Pant 5 fissure.

296	Methods.
297	Digital models.
298	Digital mandibular reconstructions (Fig. 1a,b) were generated by combining synchrotron
299	radiation X-ray tomographic microscopy (SRXTM) or micro-computed tomography (μ CT)
300	scans from similar sized, mature individuals of each taxon (Extended Data Figure 3 and
301	Supplementary Information). Morganucodon mandibular specimens were scanned using
302	synchrotron radiation X-ray tomographic microscopy (SRXTM) at the Swiss Light Source
303	TOMCAT beamline. The material was scanned at 18keV and a pixel size of 1.85 microns
304	(NHMUK PV M85507) or 22keV and 3.7 microns (UMZC Eo.D.45 and UMZC Eo.D.66) in
305	order to match the size of the sample with the field of view of the microscope. The
306	Kuehneotherium mandibular specimens and molar teeth, provided to illustrate the difference
307	in occlusion, were scanned on a Bruker Skyscan 1172 micro-CT system in the Department of
308	Archaeology and Anthropology at the University of Bristol. A lower resolution was adequate
309	for the finite element models (20 microns), although one specimen (NHMUK PV M92779)
310	was also scanned at 3.1 microns for internal detail.
311	
312	Processing was performed using Avizo® (Visualization Sciences Group, VSG). For each

taxon, the CT data for each specimen were re-oriented and scaled slightly if required, then

314 digitally merged and manually rendered to produce the reconstructions. As all specimens

315 were similar sizes, very limited scaling was required. The final size of the reconstructed jaw

316 was based on scaling all specimens to the size of the most complete specimen. Any empty

317 alveoli were digitally infilled and tooth crowns removed to leave all tooth surfaces at an

318 equivalent level to the tooth neck. Validation studies have shown that edentate finite element

319 models better represent experimental strains than dentate models³¹ and this obviates the need

320	to reconstruct missing teeth in the original scan data. A 2D surface mesh generated in Avizo
321	(VSG) was exported to Hypermesh (part of the Hyperworks suite from Altair, MA, USA),
322	where the digital jaws were converted into finite element (FE) models. Two-dimensional
323	mesh optimization was performed and a 3D FE-mesh generated of linear four-noded
324	tetrahedral (C3D4) elements (115,213 for Morganucodon and 68,555 for Kuehneotherium).
325	Four-noded tetrahedra may be stiffer than 10-noded tetrahedral and may slightly
326	underestimate strain ³² but our models are comparative, and tetrahedral elements are useful for
327	modeling complex and intricate morphologies. The dentary and tooth roots were created as
328	separate parts with shared mesh boundaries. In the case of fossil material, where it is
329	impossible to validate predictions of bite force with in vivo experimental data, it is possible to
330	compare the relative performance of finite element models if the models are properly scaled.
331	Scaling to equal force: surface area ratio provides a comparison of stress-strength
332	performance based solely on shape ³³ . The linear dimensions (canine to condyle) of the
333	mandibles are 17.5 mm and 20.0 mm for Morganucodon and Kuehneotherium respectively.
334	The surface area ratio of Morganucodon: Kuehneotherium, calculated from Avizo, is 1.02:1
335	and, as there is very slightly more coronoid process and incisors missing from the
336	Kuehneotherium model, the models are taken to be equal in surface area for the purpose of
337	this analysis. In this case it was therefore not necessary to scale the applied muscle forces,
338	and the models could be directly compared using the same loadings. The models were
339	converted to SI base unit linear dimensions (metres) when imported into Abaqus/CAE for
340	finite element analysis (FEA).
341	
342	The dentary bone was assigned isotropic and homogenous material properties: Young's

343 modulus of 18 GPa and Poisson's ratio of 0.3. Those for the tooth roots were as for dentine,

344 Young's modulus of 25 GPa and Poisson's ratio of 0.3. It is possible that the actual jaw

345 material properties were not isotropic, but in the absence of data otherwise, we assume 346 isotropy for the sake of this analysis. Likewise we will never know the elastic properties of 347 Mesozoic mammaliaform jaws, yet recent nanoindentation studies on the jaws of rats, 348 squirrels and guinea pigs have revealed a range of 10-30 GPa for the Young's modulus of 349 bone, and 15-25 GPa for incisor dentine³⁴ and our chosen values encompass this range. 350 351 The orientation (line of action) of the mammaliaform anterior and posterior temporalis and 352 superficial and deep masseter adductor muscles were reconstructed (Extended Data Fig. 4a, b). The medial pterygoid was omitted as, if present, it was small³⁵. Adductor muscle 353 354 orientation was deduced by estimating the position of the point of origination on the skull, 355 coupled with study of the insertion areas on the mandibular fossae of the fossil specimens. The detailed description of the skull of *Morganucodon*³⁶ was used as reference for the muscle 356 357 origins for *Morganucodon*. There is no skull material for *Kuehneotherium*, but, the gross morphology of the lower jaw of the slightly older Brazilian eucynodont *Brasilitherium*^{37, 38} is 358 359 very similar to Kuehneotherium (PGG pers. obs.) and so the general skull shape of

360 *Brasilitherium* was used, with caution, as a proxy for the position of the *Kuehneotherium*

360 *Brasilitherium* was used, with caution, as a proxy for the position of the *Kuehneotherium*

361 muscle origins (Extended Data Figure 4c, d). The temporalis has its origin on the parietal

362 bones of the skull, with development of a sagittal crest in Morganucodon, although this latter

363 is not known for *Kuehneotherium*. The temporalis inserts both medially and laterally in the

364 temporal fossae on either side of the coronoid process, with the muscles divided into anterior

and posterior vectors³⁵. The anterior temporalis (AT) insertions on the lateral and medial

366 sides of the jaws were represented by a predominantly vertical vector and were coupled to a

367 single point in space representing their origin on the skull. The posterior temporalis (PT)

368 component was dealt with by applying a posteriorly directed load, as from the posterodorsal

369 portion of the coronoid process. The coronoid hook of *Morganucodon*¹² and posterodorsal

370 portion of the coronoid process in *Kuehneotherium* are missing in the reconstructions, so a 371 means to simulate the missing portions of the coronoid processes for the muscle attachment 372 had to be devised. A multi-point rigid body was created, from the broken edge of the 373 coronoid process to the position of the coronoid hook; in effect completing the coronoid 374 process and producing a point in space for the posterior temporalis origin (Extended Data 375 Fig. 4 insert). The masseter in mammals is divided into superficial and deep components, with their origins on the zygomatic arch^{35} ; the superficial masseter (SM) at the anterior end 376 on the jugal and the deep masseter (DM) posteriorly on the squamosal³⁶. They insert laterally 377 378 on the jaw behind the tooth row. In *Morganucodon*, the two mandibular fossae are distinct 379 and that of the superficial masseter is adjacent to the angular process of the jaw. There is no 380 angular process in *Kuehneotherium*, but the masseteric fossa is well developed. The lines of 381 action of muscles defined here were used to calculate mechanical advantage, and for the 382 finite element analysis.

383

384 Classical mechanics.

385 The digital models were used for calculation of mechanical advantage and beam theory to 386 measure strength in bending. Mechanical advantage (MA), as a measure of the efficiency of 387 the jaw system to transfer input muscle force from the adductor musculature to the point of biting, is frequently used as a metric of jaw function³⁹ and correlates with prey choice and 388 feeding ecology in organisms such as fish^{40, 41}. MA is calculated here as the length of the in-389 390 lever, the moment arm of the adductor musculature, divided by the length of the out-lever, 391 the moment arm of the bite, i.e. the distance from the jaw joint to the bite point. The moment 392 arms were calculated by taking scaled screen images of the jaws in Abaqus, in both lateral 393 and dorsal orientations to calculate the in-lever arm for each of the four muscles (anterior 394 temporalis; posterior temporalis; deep masseter and superficial masseter). A central point

395 was chosen within the muscle insertion area, in each case, to give the line of action of each 396 muscle. The four muscle vectors were resolved to give a single adductor muscle vector, and 397 the in-lever arm calculated.

398

Beam theory has been applied to the mandibular corpus in a number of studies^{18, 22, 35, 42} and 399 is related to dietary specialization in small mammals such as bats⁴³. A measure of strength in 400 401 bending is estimated from the section modulus Z, calculated at specific intervals along the 402 jaw. The section modulus Z is the second moment of area (I) divided by the distance from the 403 neutral axis to the outer edge, in the plane of bending, so the orientation considered affects 404 the value of the bending strength. In this case the section modulus was measured in the dorsoventral (Zx) and mediolateral planes (Zy). We follow Therrien¹⁸ in measuring Z at 405 406 interdental gaps along the tooth row to the canine, plus a further section just posterior to the 407 ultimate molar. The reconstructed hemimandibles were digitally sliced perpendicular to the 408 long axis of the mandible to produce cross sectional images at the interdental gaps. Each cross section image was loaded into ImageJ⁴⁴ and Zx and Zy calculated using the plugin 409 410 MomentMacro. We measured all interdental gaps, with postcanine numbers of eight and 12 411 for Morganucodon and Kuehneotherium respectively. The polar moment of inertia (J), the 412 beam's ability to resist torsion, is calculated from the addition of the second moment of area, 413 I, in the dorsoventral (Ix) and mediolateral (Iy) planes.

414

415 Finite element analysis (FEA).

416 Boundary constraints were applied to the condyle and at three bite points; canine, final

417 premolar and mid molar. The anterior incisor bite point could not be included, as there are no

418 specimens of this portion of the mandible in *Kuehneotherium*. The ultimate premolar is the

419 largest of the premolars in both taxa. In Morganucodon, the largest (second) molar was

420	chosen as the 'mid molar' and in Kuehneotherium a mid row (third) molar was used. Both
421	single node ⁴⁵ and distributed area (stiff beam elements) constraints ⁴⁶ have been used to
422	estimate bite forces (discussion in Tseng <i>et al.</i> ¹⁷), but we used multipoint constraints (MPC),
423	with master and slave nodes to minimise artificial stress concentrations ⁴⁷ . There were
424	approximately 22 nodes constrained for each tooth and 30 nodes constrained at the jaw joint.
425	Boundary conditions should never restrict deformations allowed by the represented
426	environment ⁴⁷ , so the bite points were appropriately constrained in four degrees of freedom
427	(DOF) (U1=U2=UR2=UR3=0), and the dentary condyle in four DOF (U1=U2=U3=UR3=0).
428	(N.B. U1 is the mesiodistal axis; U2 is the dorsoventral axis and U3 is the axis along the
429	length of the jaw, U refers to translational movement, UR refers to rotational movement).
430	
431	As the true muscle loadings for Morganucodon and Kuehneotherium are not known, we
432	utilized a comparative approach, assuming an equal muscle load applied to each taxon ^{48, 49} .
433	Given the equivalence of surface area between the two models, this was appropriate ³³ . For
434	the initial models the relative contribution of each muscle to overall bite force was based on
435	muscle ratios assigned to <i>Morganucodon</i> by Crompton and Hylander ³⁵ . These authors assign
436	unit values of muscle forces to the jaw of Morganucodon: anterior temporalis, 10; posterior
437	temporalis, 8; superficial masseter, 8; deep masseter, 8. The values are arbitrary but reflect
438	the relative proportions each muscle contributes to bite force production. The actual loading
439	forces we used were: anterior temporalis, 2N; posterior temporalis, 1.6N; superficial
440	masseter, 1.6N; deep masseter, 1.6N. We call this the initial loading regime. Contracting
441	together at 100% activation, these muscles generate a bite reaction force of 2N at the mid-
442	molar of the Morganucodon FE-model, sufficient to pierce insect cuticle (see below).
443	Crompton & Hylander's calculations ³⁵ are based on a unilateral bite, but with adductors
444	active on both sides, so allowance is made for the balancing side. Both Morganucodon and

- *Kuehneotherium* have a mobile symphysis^{12,30} and, as this current study is a comparative one
 of single lower jaws, it does not make assumptions about the forces on the balancing side,
 and the loads above are applied to the individual mandibular rami.
- 448

449 The reaction forces were queried in ABAQUS at the bite points and condyle and the 450 maximum Von Mises (VM) stress patterns recorded. VM stress is calculated as it indicates regional deformation as a function of the three principal stresses $\sigma 1$, $\sigma 2$, and $\sigma 3^{50}$. Maximum 451 452 principal strain values were also recorded (Table 1). Muscle loadings were then manipulated 453 to obtain a bite reaction force sufficient to pierce appropriately sized beetle carapace. *Myotis* 454 bats are a similar size to Morganucodon and Kuehneotherium (skull length ca.14mm) and 455 beetles in their stomachs range in length from 1-10 mm, with a 10 mm beetle requiring 2-3N of force to pierce the insect²⁷. This is corroborated by *Myotis velifer* bats recorded as having a 456 bite force of 2.2N²⁶. The initial muscle loads in *Morganucodon* produced a bite reaction force 457 458 of 2N at the molar bite, but in *Kuehneotherium* it was necessary to increase the muscle 459 loadings by 1.75x to give a 2N reaction force at the constrained molar tooth. 460

461 Microtextural analysis of tooth microwear.

Recent work has shown that quantitative microtextural analysis of tooth wear is a powerful tool for dietary discrimination and investigation of trophic resource exploitation in a range of extant and fossil vertebrates⁵¹⁻⁵⁶. Our analysis compared the values for ISO 25178-2 areal texture parameters⁵⁷ for worn tooth surfaces in *Morganucodon* and *Kuehneotherium* with the results of analysis of the relationship between texture and diet in extant insectivorous bats²⁹. 3D microtextural analysis is entirely independent of our other functional and biomechanical analyses and thus provides effective validation of our results.

469

470	Material used for microwear analysis is listed in Extended Data Table 1. Fossil specimens
471	were recently prepared at the School of Earth Sciences, University of Bristol by immersing
472	dried blocks of matrix in hot water, with the addition of dilute hydrogen peroxide only if
473	required. The exception is two Pontalun 3 Kuehneotherium molars, prepared at University
474	College London (UCL) in the 1970s, with added sodium hexametaphosphate (TM Calgon) to
475	aid dissolution of the matrix. No acetic acid was used on any specimens. Bat specimens were
476	all wild-found, acquired from UK sources (Extended Data Table 1) and assumed to be
477	natural-deaths. Specimens were fixed in either ethanol (UOB, NLBG) or 10% formalin
478	solution (VLA). Taxa were selected in order to include insectivores with well-constrained
479	differences in their diets ⁵⁸⁻⁵⁹ . See Extended Data Table 2 and Purnell <i>et al.</i> ²⁹ for details.
480	
481	Our methods for capture of 3D microwear data follow those developed by Purnell <i>et al.</i> ⁶⁰ (for
482	full details see Purnell et al. ²⁹). 3D surface data were captured from tooth wear facets (distal
483	protoconid facet of M_2 for bats, distobuccal wear facet of the main cusp of m_2 for
484	Morganucodon and a mid-row molar for Kuehneotherium) using an Alicona Infinite Focus
485	microscope G4b (IFM; software version 2.1.2, field of view 145 x 110 μ m, lateral optical
486	resolution 0.35 - 0.4 μ m, vertical resolution 20 μ m; lateral resolution factor for the IFM set at
487	0.3) (see Purnell <i>et al.</i> ²⁹). All 3D data were edited to delete dirt and dust particles from the
488	surface (using Alicona IFM software) and exported as .sur files. All subsequent processing of
489	data used SurfStand (version 5.0.0). Data were leveled, and a 5th order robust polynomial
490	and a robust Gaussian wavelength filter ($\lambda c = 0.025$ mm) applied to remove gross surface
491	form and long wavelength features of the tooth surface. This generates a scale-limited
492	roughness surface (Fig. 2) from which we derived ISO 25178-2 standard roughness
493	parameters ⁵⁷ . Sample sizes used in this study are relatively small, but as demonstrated by

494 Purnell *et al.*²⁹ this does not prevent detection of dietary signals through microtextural

495	analysis. Data were explored using ANOVA, correlations, and Principal Components (on
496	correlations; PCA). All statistical analysis of microtextural data was carried out using JMP 9.
497	The results of Shapiro-Wilk tests indicated that some roughness parameters were non-
498	normally distributed ($p > 0.05$), but for almost all parameters we were unable to reject the
499	null hypothesis of normality for log-transformed data, so log-transformed data were used for
500	analysis. Where homogeneity of variance tests revealed evidence of unequal variances,
501	Welch ANOVA was used.
502	
503 504 505	 Marinescu, R., Daegling, D. J. & Rapoff, A. J. Finite-element modeling of the anthropoid mandible: The effects of altered boundary conditions. <i>Anat. Rec.</i> 283, 300 (2005)
506 507	 Bright, J. A. & Rayfield, E. J. The Response of Cranial Biomechanical Finite Element Models to Variations in Mesh Density. <i>Anat. Rec.</i> 294, 610 (2011)
508 509 510	 Dumont, E. R., Grosse, I. R. & Slater, G. J. Requirements for comparing the performance of finite element models of biological structures. <i>J. Theor. Biol.</i> 256, 96– 103 (2009)
511 512 513	34. Cox, P. G., Fagan, M. J., Rayfield, E. J. & Jeffery, N. Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. J. Anat. 219, 696 (2011)
514 515 516 517	35. Crompton, A. W. & Hylander, W. L. Changes in mandibular function following the acquisition of a dentary-squamosal jaw articulation, in <i>The Ecology and Biology of Mammal-like Reptiles</i> , N. Hotton, P. D. MacLean, J. J. & Roth, E. C. Roth, Eds. Smithsonian Press, Washington DC (1986).
518 519	36. Kermack, K. A., Mussett, F. & Rigney, H. W. The skull of <i>Morganucodon. Zool. J. Linn. Soc.</i> 71 , 1 (1981)
520 521 522	 Bonaparte, J. F., Martinelli, A. G., Schultz, C. L. & Rubert, R. The sister group of mammals: small cynodonts from the Late Triassic of southern Brazil. <i>Rev. Brasil.</i> <i>Paleont.</i> 5, 5 (2003)
523 524 525	 Bonaparte, J. F., Martinelli, A. G. & Schultz, C. L. New information on <i>Brasilodon</i> and <i>Brasilitherium</i> (Cynodontia, Probainognathia) from the Late Triassic, southern Brazil. <i>Rev. Brasil. Paleont</i> 8, 25 (2005)
526 527	39. Hiiemae, K. W. & Houston, J. B. The structure and function of the jaw muscles in the rat (<i>Rattus norvegicus</i> L.) <i>Zool. J. Linn. Soc.</i> 50 , 75-99 (1971)

528 529 530	40.	Wainwright, P. C., Bellwood, D. R., Westneat, M. W., Grubrich, J. R. & Hoey, A. S. A functional morphospace for the skull of labrid fishes: patterns of diversity in a complex biomechanical system. <i>Biol. J. Linn. Soc.</i> 82 , 1–25 (2004)
531 532	41.	Bellwood, D. R., Wainwright, P. C., Fulton, C. J. & Hoey, A. S. Functional versatility supports coral reef biodiversity. <i>Proc. Biol. Sci.</i> 273(1582) , 101–107 (2006)
533 534	42.	Cuff, A. R. & Rayfield, E. J. Feeding Mechanics in Spinosaurid Theropods and Extant Crocodilians. <i>PLoS ONE</i> 8 e65295. doi:10.1371/journal.pone.0065295 (2013)
535 536	43.	Dumont, E. R. & Nicolay, C. W. Cross-sectional geometry of the dentary in bats. <i>Zoology</i> 109 , 66-74 (2007)
537 538	44.	Rasband, W. S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/ (1997-2012)
539 540 541	45.	Davis, J. L., Santana, S. E., Dumont, E. R. & Grosse. I. R. Predicting bite force in mammals: two-dimensional versus three-dimensional lever models. <i>J. Exp. Biol.</i> 213 , 1844 (2010)
542 543 544	46.	McHenry, C. R., Wroe, S., Clausen, P. D., Moreno, K. & Cunningham, E. Supermodeled sabercat, predatory behavior in <i>Smilodon fatalis</i> revealed by high-resolution 3D computer simulation. <i>PNAS</i> 104 , 16010–16015 (2007)
545 546	47.	B. J. M. Donald, <i>Practical Stress Analysis with Finite Elements</i> . Glasnevin Publishing, Dublin (2007)
547 548	48.	Christiansen, P. A dynamic model for the evolution of sabrecat predatory bite mechanics. <i>Zool. J. Linn. Soc.</i> 162 , 220 (2011)
549 550 551	49.	Tseng, Z. J. & Binder, W. J. Mandibular biomechanics of <i>Crocuta crocuta</i> , <i>Canis lupus</i> , and the late Miocene <i>Dinocrocuta gigantea</i> (Carnivora, Mammalia). <i>Zool. J. Linn. Soc.</i> 158 683–696 (2010)
552 553	50.	Dumont, E. R., Piccirillo, J. & Grosse, I. R. Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. <i>Anat. Rec.</i> 283A , 319-330 (2005)
554 555	51.	Scott, R. S. <i>et al.</i> Dental microwear texture analysis shows within-species diet variability in fossil hominins. <i>Nature</i> , 436 , 693 (2005)
556 557	52.	Scott R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs B. E. <i>et al.</i> Dental microwear texture analysis: technical considerations. <i>J. Hum. Evol.</i> 51 , 339 (2006)
558 559 560	53.	Ungar, P. Dental Microwear Texture Analysis of Varswater Bovids and Early Pliocene Paleoenvironments of Langebaanweg, Western Cape Province, South Africa. <i>J. Mammal. Evol.</i> 14 , 163 (2007)
561 562 563	54.	Ungar, P. S., Grine, F. E. & Teaford, M. F. Dental Microwear and Diet of the Plio- Pleistocene Hominin <i>Paranthropus boisei</i> . PLoS ONE 3 e2044. doi:10.1371/journal.pone.0002044 (2008)
564	55.	Purnell, M. A., Hart, P. J. B., Baines, D. C. & Bell, M. A. Quantitative analysis of

565 566	dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates. <i>J. Anim. Ecol.</i> 75 , 967 (2006)
567 568 569	 Calandra, I., Schulz, E., Pinnow, M., Krohn, S. & Kaiser, T. M. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates. <i>J. Hum.</i> <i>Evol.</i> 63, 85-98 (2012)
570 571 572	 57. International Organization for Standardization, "Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters (ISO 25178-2)" (2012)
573	58. Vaughan, N. The diets of British bats (Chiroptera). Mamm. Rev. 27 77 (1997)
574 575	 Barlow, K. The diets of two phonic types of the bat <i>Pipistrellus pipistrellus</i> in Britain. J. Zool. 243 597 (1997)
576 577 578	60. Purnell, M. A., Seehausen, O. & Galis, F. Quantitative 3D microtextural analysis of tooth wear as a tool for dietary discrimination in fishes. <i>J. R. Soc. Interface.</i> doi:10.1098/rsif.2012.0140. (2012)
579 580	61. Luo, Z-X., Kielan-Jaworowska, Z. & Cifelli, R. L. In quest for a phylogeny of Mesozoic mammals. <i>Acta Pal. Pol.</i> 47 , 1 (2002)
581 582	62. Evans, S. E. & Kermack, K. A. in <i>In the Shadow of the Dinosaurs, Early Mesozoic Tetrapods</i> , N. C. Fraser, H-D. Sues, Eds. Cambridge University Press (1994)
583 584	63. Gill, P. G. Resorption of premolars in the early mammal <i>Kuehneotherium</i> praecursoris. Arch. Oral Biol. 19 , 327 (1974)
585	
586	Extended Data Legends
587	Extended Data Figure 1 Phylogenetic relationships of major Mesozoic mammal
588	lineages. Relative tree positions of Morganucodon and Kuehneotherium in red. Based on Fig
589	1 in Luo et al. ⁶¹ . The filled green circle denotes the node for the mammalian crown group.
590	
591	Extended Data Figure 2 Pontalun 3 fissure locality. a, Map to show location of the
592	Glamorgan quarries in Wales, UK. The black square denotes the area of the map shown in b.
593	Map attribution; Jhamez84. CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0).
594	b, Location of the Glamorgan quarries yielding tetrapod remains, with white arrow marking

595 Pontalun quarry. Carboniferous Limestone upland areas in grey. Modified from Evans and
 596 Kermack⁶².

597

598	Extended Data Figure 3 Molar form and specimens scanned to create the digital
599	reconstructions of the dentaries of <i>Morganucodon</i> and <i>Kuehneotherium</i> . a, NHMUK PV
600	M92538, an isolated Morganucodon watsoni right lower molar (identified as m4) in lingual
601	view b , NHM NHMUK PV M9277, an isolated <i>Kuehneotherium praecursoris</i> right lower
602	molar (mid row) in lingual view; note the triangulation of the cusp arrangement. Both molars
603	digitally reconstructed from uCT scans and reversed to fit with views of the dentaries. c-e,
604	Specimens used for the digital reconstruction of Morganucodon watsoni. c, UMZC Eo.D.61
605	with m4 in situ; d , UMZC Eo.D.45 with p4, m1, m3 and m4 in situ; e , NHMUK PV M85507
606	with i1-4. (N.B. the only Glamorgan specimen known with complete incisors in situ). f-i,
607	Specimens used for the digital reconstruction of Kuehneotherium praecursoris: f, NHMUK
608	PV M19766 (paratype C865 in Kermack <i>et al.</i> ¹³) with coronoid process and condylar region;
609	g, NHMUK PV M19749 (paratype C864 in Kermack <i>et al.</i> ¹³) postdentary trough region; h,
610	UMZC Sy.97 with complete alveoli for m5-6 and partial alveoli for m3-4; i, NHMUK PV
611	M92779 with alveoli for p1-m4 (U73 in Gill ⁶³). All from Pontalun 3 fissure, except f and g
612	from Pontalun 1 fissure, which Gill ³⁰ assigned to the same hypodigm. All images show
613	medial view. All are left dentaries, except c and d which are reversed for ease of reference to
614	the reconstructions in Fig. 1.
615	

616 Extended Data Figure 4 | Static loaded FE models to represent the jaw at the moment of

617 **biting.** Right mandible models in lateral view of **a**, *Morganucodon* and **b**, *Kuehneotherium*

618 to show muscle loading, constraints and bite points. Inset in a, shows modeled rigid body

619 used to simulate missing coronoid process, for posterior temporalis loading. Muscle

620	abbreviations: AT, anterior temporalis; PT, posterior temporalis; SM, superficial masseter;
621	DM, deep masseter. Constraints indicated at the jaw joint and three individual bite points at
622	the mid molar (m2 in Morganucodon and m3 in Kuehneotherium), ultimate premolar (p4 in
623	Morganucodon and p6 in Kuehneotherium) and canine. The muscle origin positions are
624	shown for c , <i>Morganucodon</i> and d , <i>Kuehneotherium</i> . <i>Morganucodon</i> skull reconstruction
625	from Kermack et al. ³⁶ and Brasilitherium skull, used as a proxy for the unknown
626	Kuehneotherium skull, from Bonaparte et al. ³⁷ . The teeth have been removed for consistency
627	with the mandible models. See Methods for explanations.
628	
629	Extended Data Table 1 Specimens used for the microtextural analysis of tooth
630	microwear. Abbreviations: LEIUG, University of Leicester Geology collections; UOB,
631	University of Bristol; VLA, Veterinary Laboratory Agencies; NLB, North Lancashire Bat
632	Group.
633	
634	Extended Data Table 2 Trophic categorization and diets of British bat species used for
635	validation of microtextural analysis of early mammal teeth. Table from Purnell et al. ²⁹
636	modified from Vaughan ⁵⁸ and references therein, and Barlow ⁵⁹ .
637	
638	Extended Data Table 3 Correlations between roughness parameters from
639	Morganucodon and Kuehneotherium teeth and PC axes 1 and 2 derived from analysis of
640	the nine roughness parameters that differ between bat species. * indicates significant
640 641	the nine roughness parameters that differ between bat species. $*$ indicates significant correlations (P < 0.05). See Extended Date Table 5 for definitions of parameters.
640 641 642	the nine roughness parameters that differ between bat species. $*$ indicates significant correlations (P < 0.05). See Extended Date Table 5 for definitions of parameters.
640641642643	the nine roughness parameters that differ between bat species. * indicates significant correlations (P < 0.05). See Extended Date Table 5 for definitions of parameters. Extended Data Table 4 Loadings (eigenvectors) for roughness parameters onto PC

- 646 Extended Data Table 5 | Short definitions and categorization of 3D areal surface
- **texture parameters.** For further explanation see Purnell *et al.*²⁹, figs S1 and S2.

