University of Leicester
Browse

Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse

Download (1.32 MB)
journal contribution
posted on 2016-01-21, 09:52 authored by E. Torrado, J. J. Fountain, R. T. Robinson, C. A. Martino, John Edward Pearl, J. Rangel-Moreno, M. Tighe, R. Dunn, A. M. Cooper
Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb) infection in mice that have B cells but which lack secretory immunoglobulin (AID(-/-)µS(-/-)mice). AID(-/-)µS(-/-) mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6) mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID(-/-)µS(-/-) mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID(-/-)µS(-/-) mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID(-/-)µS(-/-)mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID(-/-)µS(-/-) mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation.

History

Citation

PLoS One, 2013, 8 (4), e61681

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Infection, Immunity and Inflammation

Version

  • VoR (Version of Record)

Published in

PLoS One

Publisher

Public Library of Science

eissn

1932-6203

Acceptance date

2013-03-13

Copyright date

2013

Available date

2016-01-21

Publisher version

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061681

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC