University of Leicester
Browse
AA+dimers+-+PCCP+-+revised.pdf (1.72 MB)

Dimers of acetic acid in helium nanodroplets.

Download (1.72 MB)
journal contribution
posted on 2019-02-07, 12:20 authored by JA Davies, MWD Hanson-Heine, NA Besley, A Shirley, J Trowers, S Yang, AM Ellis
The structural arrangement of small carboxylic acid molecules in the liquid phase remains a controversial topic. Some studies indicate a dominance of the cyclic dimer that prevails in the gas phase, whilst other studies favor short fragments of the infinite catemer chains that are found in the crystalline phase. Furthermore, difficulties in preparing and probing size-selected catemer segments have resulted in a lack of benchmark data upon which theoretical models of the condensed phases can be built. To address these issues, we have combined infrared spectroscopy and quantum chemical calculations to explore regions of the intermolecular potential energy surface associated with the formation of metastable dimer isomers. The OH stretching region of the spectrum shows that aggregation of acetic acid molecules inside liquid helium nanodroplets yields two distinct metastable dimers, whilst negligible signal is observed from the cyclic dimer that typically overwhelms this spectral region. We deduce that the most abundant isomer in superfluid helium has one strong O-HO[double bond, length as m-dash]C and one weak C-HO[double bond, length as m-dash]C hydrogen bond. Since this bonding motif is common to the dimeric repeating unit of the catemer, it is of fundamental importance for understanding intermolecular interactions in the condensed phases of small carboxylic acids.

Funding

The authors wish to thank the Leverhulme Trust for providing financial support (grant number RPG-2016-308) for this work.

History

Citation

Phys Chem Chem Phys, 2018

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Chemistry

Version

  • AM (Accepted Manuscript)

Published in

Phys Chem Chem Phys

Publisher

Royal Society of Chemistry

eissn

1463-9084

Acceptance date

2018-10-29

Copyright date

2018

Available date

2019-10-29

Publisher version

https://pubs.rsc.org/en/Content/ArticleLanding/2019/CP/C8CP05934A#!divAbstract

Notes

The file associated with this record is under embargo until 12 months after publication, in accordance with the publisher's self-archiving policy. The full text may be available through the publisher links provided above.

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC