University of Leicester
Browse

Direct visualization of a Fe(IV)–OH intermediate in a heme enzyme

Download (673.23 kB)
journal contribution
posted on 2016-11-29, 15:23 authored by Hanna Kwon, Jaswir Basran, Cecilia M. Casadei, A. J. Fielding, T. E. Schrader, A. Ostermann, J. M. Devos, P. Aller, M. P. Blakeley, Peter C. E. Moody, Emma L. Raven
Catalytic heme enzymes carry out a wide range of oxidations in biology. They have in common a mechanism that requires formation of highly oxidized ferryl intermediates. It is these ferryl intermediates that provide the catalytic engine to drive the biological activity. Unravelling the nature of the ferryl species is of fundamental and widespread importance. The essential question is whether the ferryl is best described as a Fe(IV)=O or a Fe(IV)–OH species, but previous spectroscopic and X-ray crystallographic studies have not been able to unambiguously differentiate between the two species. Here we use a different approach. We report a neutron crystal structure of the ferryl intermediate in Compound II of a heme peroxidase; the structure allows the protonation states of the ferryl heme to be directly observed. This, together with pre-steady state kinetic analyses, electron paramagnetic resonance spectroscopy and single crystal X-ray fluorescence, identifies a Fe(IV)–OH species as the reactive intermediate. The structure establishes a precedent for the formation of Fe(IV)–OH in a peroxidase.

Funding

This work was supported by BBSRC (grant BB/K015656/1 to PM/ER), The Wellcome Trust (grant WT094104MA to PM/ER), the EPSRC National EPR Facility and Service, an Institut Laue-Langevin (ILL) studentship (to CC). Beam time was awarded from the LADI-III beamline, ILL and the BIODIFF beamline at FRM II. We acknowledge a Diamond award (MX 103690) to the UK Midlands BAG for I04 time.

History

Citation

Nature Communications, 2016 7:13445

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Chemistry

Version

  • VoR (Version of Record)

Published in

Nature Communications

Publisher

Nature Publishing Group

eissn

2041-1723

Acceptance date

2016-10-05

Available date

2016-11-29

Publisher version

http://www.nature.com/articles/ncomms13445

Notes

The authors declare that the data supporting the findings of this study are available within the article and its Supplementary Information. Atomic coordinates and diffraction data have been deposited in the Protein Data Bank (accession codes 5JPR and 5JQR).

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC