University of Leicester
Browse
- No file added yet -

Disc instability in RS Ophiuchi: A path to Type Ia supernovae

Download (568.02 kB)
journal contribution
posted on 2012-10-24, 08:54 authored by G. A. Wynn, A. R. King, J. E. Pringle
We study the stability of disc accretion in the recurrent nova RS Ophiuchi. We construct a one-dimensional time-dependent model of the binary–disc system, which includes viscous heating and radiative cooling and a self-consistent treatment of the binary potential. We find that the extended accretion disc in this system is always unstable to the thermal–viscous instability, and undergoes repeated disc outbursts on ∼10–20 yr time-scales. This is similar to the recurrence time-scale of observed outbursts in the RS Oph system, but we show that the disc’s accretion luminosity during outburst is insufficient to explain the observed outbursts. We explore a range of models, and find that in most cases the accretion rate during outbursts reaches or exceeds the critical accretion rate for stable nuclear burning on the white dwarf surface. Consequently we suggest that a surface nuclear burning triggered by disc instability may be responsible for the observed outbursts. This allows the white dwarf mass to grow over time, and we suggest that disc instability in RS Oph and similar systems may represent a path to Type Ia supernovae.

History

Citation

Monthly Notices of the Royal Astronomical Society , 2011, 418 (4), pp. 2576-2583

Version

  • VoR (Version of Record)

Published in

Monthly Notices of the Royal Astronomical Society

Publisher

Oxford University Press (OUP)

issn

0035-8711

eissn

1365-2966

Copyright date

2011

Available date

2012-10-24

Publisher version

http://mnras.oxfordjournals.org/content/418/4/2576

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC