University of Leicester
Browse

Dropout-based Adversarial Training Networks for Remote Sensing Scene Classification

Download (20.25 MB)
journal contribution
posted on 2022-07-04, 09:53 authored by X Wang, Z Mao, A Shi, Z Zhang, Huiyu Zhou

Scene  classification  in  remote  sensing  (RS)  images  is  a  challenging  task  due  to  the  lack  of  well labeled  data.  Recently,  deep transfer  learning  (DTL)  has been  proposed to  handle  this  task.  However, most DTL methods cannot effectively deal with ambiguous features  on  class  boundaries and multi-modal  structures of  RS  data, so their performance is unsatisfactory. To handle the challenges, this letter  presents  a  novel  dropout-based  adversarial  training  network  for   RS   scene classification.   Specifically,   a   dropout-based   labelclassifier  module is  designed  to reduce  the  selection  of  ambiguous features.  Then,  a  dropout-based  domain discriminator  module  is constructed to capture  multi-modal  structures  of  RS  images so  as to achieve  fine-grained  alignment  between  cross-domain  distributions.  Third,  a  joint  distribution  of  features  and  labels  is  built  to  further  enhance  the  performance. Experiments  on  seven public  RS data sets show  that  our  model  outperforms    several  state-of-the-arts    under different conditions.

History

Citation

IEEE Geoscience and Remote Sensing Letters, 2022, in press

Author affiliation

School of Computing and Mathematical Sciences, University of Leicester

Version

  • AM (Accepted Manuscript)

Published in

IEEE Geoscience and Remote Sensing Letters

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

issn

1545-598X

eissn

1558-0571

Acceptance date

2022-06-26

Copyright date

2022

Available date

2022-07-04

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC