University of Leicester
Browse

ERK5 Activation by Gq-Coupled Muscarinic Receptors Is Independent of Receptor Internalization and β-Arrestin Recruitment

Download (849.49 kB)
journal contribution
posted on 2015-07-20, 09:23 authored by G. Sánchez-Fernández, S. Cabezudo, C. García-Hoz, Andrew B. Tobin, F. Mayor, C. Ribas
G-protein-coupled receptors (GPCRs) are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK) pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII) failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.

History

Citation

PLoS One, 2013, 8 (12), e84174

Author affiliation

/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Biological Sciences/Department of Cell Physiology and Pharmacology

Version

  • VoR (Version of Record)

Published in

PLoS One

Publisher

Public Library of Science

eissn

1932-6203

Acceptance date

2013-11-20

Copyright date

2013

Available date

2015-07-20

Publisher version

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084174

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC