posted on 2016-11-28, 16:53authored byH. T. den Dekker, A. M. Sonnenschein-van der Voort, J. C. de Jongste, I. Anessi-Maesano, S. H. Arshad, H. Barros, Caroline S. Beardsmore, H. Bisgaard, S. C. Phar, L. Craig, G. Devereux, C. K. van der Ent, A. Esplugues, M. P. Fantini, C. Flexeder, U. Frey, F. Forastiere, U. Gehring, D. Gori, A. C. van der Gugten, A. J. Henderson, B. Heude, J. Ibarluzea, H. M. Inskip, T. Keil, M. Kogevinas, E. Kreiner-Møller, C. E. Kuehni, S. Lau, E. Mélen, M. Mommers, E. Morales, J. Penders, K. C. Pike, D. Porta, I. K. Reiss, G. Roberts, A. Schmidt, E. S. Schultz, H. Schulz, J. Sunyer, M. Torrent, M. Vassilaki, A. H. Wijga, C. Zabaleta, V. W. Jaddoe, L. Duijts
BACKGROUND: Children born preterm or with a small size for gestational age are at increased risk for childhood asthma. OBJECTIVE: We sought to assess the hypothesis that these associations are explained by reduced airway patency. METHODS: We used individual participant data of 24,938 children from 24 birth cohorts to examine and meta-analyze the associations of gestational age, size for gestational age, and infant weight gain with childhood lung function and asthma (age range, 3.9-19.1 years). Second, we explored whether these lung function outcomes mediated the associations of early growth characteristics with childhood asthma. RESULTS: Children born with a younger gestational age had a lower FEV1, FEV1/forced vital capacity (FVC) ratio, and forced expiratory volume after exhaling 75% of vital capacity (FEF75), whereas those born with a smaller size for gestational age at birth had a lower FEV1 but higher FEV1/FVC ratio (P < .05). Greater infant weight gain was associated with higher FEV1 but lower FEV1/FVC ratio and FEF75 in childhood (P < .05). All associations were present across the full range and independent of other early-life growth characteristics. Preterm birth, low birth weight, and greater infant weight gain were associated with an increased risk of childhood asthma (pooled odds ratio, 1.34 [95% CI, 1.15-1.57], 1.32 [95% CI, 1.07-1.62], and 1.27 [95% CI, 1.21-1.34], respectively). Mediation analyses suggested that FEV1, FEV1/FVC ratio, and FEF75 might explain 7% (95% CI, 2% to 10%) to 45% (95% CI, 15% to 81%) of the associations between early growth characteristics and asthma. CONCLUSIONS: Younger gestational age, smaller size for gestational age, and greater infant weight gain were across the full ranges associated with childhood lung function. These associations explain the risk of childhood asthma to a substantial extent.
History
Citation
Journal of Allergy and Clinical Immunology, 2016, 137 (4), pp. 1026-1035
Author affiliation
/Organisation/COLLEGE OF MEDICINE, BIOLOGICAL SCIENCES AND PSYCHOLOGY/School of Medicine/Department of Infection, Immunity and Inflammation
Version
AM (Accepted Manuscript)
Published in
Journal of Allergy and Clinical Immunology
Publisher
Elsevier, for American Academy of Allergy, Asthma and Immunology, Mosby