University of Leicester
Browse

Edge-Enhanced QoS Aware Compression Learning for Sustainable Data Stream Analytics

Download (4.15 MB)
journal contribution
posted on 2023-04-28, 13:03 authored by MU Amaizu, M Ali, A Anjum, L Liu, A Liotta, O Rana

Existing Cloud systems involve large volumes of data streams being sent to a centralised data centre for monitoring, storage and analytics. However, migrating all the data to the cloud is often not feasible due to cost, privacy, and performance concerns. However, Machine Learning (ML) algorithms typically require significant computational resources, hence cannot be directly deployed on resource-constrained edge devices for learning and analytics. Edge-enhanced compressive offloading becomes a sustainable solution that allows data to be compressed at the edge and offloaded to the cloud for further analysis, reducing bandwidth consumption and communication latency. The design and implementation of a learning method for discovering compression techniques that offer the best QoS for an application is described. The approach uses a novel modularisation approach that maps features to models and classifies them for a range of Quality of Service (QoS) features. An automated QoS-aware orchestrator has been designed to select the best autoencoder model in real-time for compressive offloading in edge-enhanced clouds based on changing QoS requirements. The orchestrator has been designed to have diagnostic capabilities to search appropriate parameters that give the best compression. A key novelty of this work is harnessing the capabilities of autoencoders for edge-enhanced compressive offloading based on portable encodings, latent space splitting and fine-tuning network weights. Considering how the combination of features lead to different QoS models, the system is capable of processing a large number of user requests in a given time. The proposed hyperparameter search strategy (over the neural architectural space) reduces the computational cost of search through the entire space by up to 89%. When deployed on an edge-enhanced cloud using an Azure IoT testbed, the approach saves up to 70% data transfer costs and takes 32% less time for job completion. It eliminates the additional computational cost of decompression, thereby reducing the processing cost by up to 30%.

History

Author affiliation

School of Computing and Mathematical Sciences, University of Leicester

Version

  • AM (Accepted Manuscript)

Published in

IEEE Transactions on Sustainable Computing

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

eissn

2377-3782

Copyright date

2023

Available date

2023-04-28

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC